Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adsorption experimental treatment

The following several sections deal with various theories or models for adsorption. It turns out that not only is the adsorption isotherm the most convenient form in which to obtain and plot experimental data, but it is also the form in which theoretical treatments are most easily developed. One of the first demands of a theory for adsorption then, is that it give an experimentally correct adsorption isotherm. Later, it is shown that this test is insufficient and that a more sensitive test of the various models requires a consideration of how the energy and entropy of adsorption vary with the amount adsorbed. Nowadays, a further expectation is that the model not violate the molecular picture revealed by surface diffraction, microscopy, and spectroscopy data, see Chapter VIII and Section XVIII-2 Steele [8] discusses this picture with particular reference to physical adsorption. [Pg.603]

The preceding treatments are based on the concept of localized rather than mobile adsorption. The distinction may be difficult experimentally note Ref. 109 and the discussion in connection with Fig. XVII-25. There are also conceptual subtleties see Section XVIII-5. [Pg.702]

Fig. 4.25 Adsorption isotherms showing low-pressure hysteresis, (a) Carbon tetrachloride at 20°C on unactivated polyacrylonitrile carbon Curves A and B are the desorption branches of the isotherms of the sample after heat treatment at 900°C and 2700°C respectively Curve C is the common adsorption branch (b) water at 22°C on stannic oxide gel heated to SOO C (c) krypton at 77-4 K on exfoliated graphite (d) ethyl chloride at 6°C on porous glass. (Redrawn from the diagrams in the original papers, with omission of experimental points.)... Fig. 4.25 Adsorption isotherms showing low-pressure hysteresis, (a) Carbon tetrachloride at 20°C on unactivated polyacrylonitrile carbon Curves A and B are the desorption branches of the isotherms of the sample after heat treatment at 900°C and 2700°C respectively Curve C is the common adsorption branch (b) water at 22°C on stannic oxide gel heated to SOO C (c) krypton at 77-4 K on exfoliated graphite (d) ethyl chloride at 6°C on porous glass. (Redrawn from the diagrams in the original papers, with omission of experimental points.)...
Contemporary development of chromatography theory has tended to concentrate on dispersion in electro-chromatography and the treatment of column overload in preparative columns. Under overload conditions, the adsorption isotherm of the solute with respect to the stationary phase can be grossly nonlinear. One of the prime contributors in this research has been Guiochon and his co-workers, [27-30]. The form of the isotherm must be experimentally determined and, from the equilibrium data, and by the use of appropriate computer programs, it has been shown possible to calculate the theoretical profile of an overloaded peak. [Pg.7]

This is the same case with which in Eqs. (2)-(4) we demonstrated the elimination of the time variable, and it may occur in practice when all the reactions of the system are taking place on the same number of identical active centers. Wei and Prater and their co-workers applied this method with success to the treatment of experimental data on the reversible isomerization reactions of n-butenes and xylenes on alumina or on silica-alumina, proceeding according to a triangular network (28, 31). The problems of more complicated catalytic kinetics were treated by Smith and Prater (32) who demonstrated the difficulties arising in an attempt at a complete solution of the kinetics of the cyclohexane-cyclohexene-benzene interconversion on Pt/Al203 catalyst, including adsorption-desorption steps. [Pg.6]

The quantitative solution of the problem, i.e. simultaneous determination of both the sequence of surface chemical steps and the ratios of the rate constants of adsorption-desorption processes to the rate constants of surface reactions from experimental kinetic data, is extraordinarily difficult. The attempt made by Smith and Prater 82) in a study of cyclohexane-cyclohexene-benzene interconversion, using elegant mathematic procedures based on the previous theoretical treatment 28), has met with only partial success. Nevertheless, their work is an example of how a sophisticated approach to the quantitative solution of a coupled heterogeneous catalytic system should be employed if the system is studied as a whole. [Pg.17]

Anderson and Brown then suggested that the effects observed by McAlevy (M3, M4) of oxygen on the ignition characteristics of solid fuels might be the result of exothermic heterogeneous reactions, since the experimental observations of McAlevy as well as those of Shannon and Anderson (S3), can be correlated by Eq. (15). Shannon has also extended the original treatment of Anderson and Brown to include the effects of adsorption and desorption on the predicted results. [Pg.18]

Application of equation 10 to the experimental D vs. [HSOIJ] data determined at 25°C and both 1 and 2 M acidity yielded straight line plots with slopes indistinguishable from zero and reproduced the Bi values determined in a non-linear regression fit of the data. This result implies no adsorption of PuSO by the resin and justifies use of the simpler data treatment represented by equation 2. A similar analysis of the Th(IV)-HSOiJ system done by Zielen (9) likewise produced results consistent with no adsorption of ThS0 + by Dowex AG50X12 resin. [Pg.256]

More recently, the curvature at air/solution interfaces has been accounted for by Nikitas and Pappa-Louisi98 in terms of a specific molecular model that predicts a linear dependence of (lM/ ) on (1/0). The same model also reproduces the behavior at metal/solution interfaces, specifically Hg electrodes, for which most of the experimental data exist. Nikitas treatment provides a method for an unambiguous extrapolation of the adsorption potential shift to 0= 1. However, the interpretation of the results is subject to the difficulties outlined above. Nikitas approach does provide... [Pg.29]

Fig. 3.5 Representation of a scheme of an experiment (upper set of drawings) and the obtained experimental results presented as AFM images (middle part) and cross-sectional profiles (bottom) that provides evidence of silica nucleation and shell formation on biopolymer macromolecules. Scheme of experiment. This includes the following main steps. 1. Protection of the mica surface against silica precipitation. It was covered with a fatty (ara-chidic) acid monolayer transferred from a water substrate with the Langmuir-Blodgett technique. This made the mica surface hydrophobic because of the orientation of the acid molecules with their hydrocarbon chains pointing outwards. 2. Adsorption of carbohydrate macromolecules. Hydrophobically modified cationic hydroxyethylcellulose was adsorbed from an aqueous solution. Hydrocarbon chains of polysaccharide served as anchors to fix the biomacromolecules firmly onto the acid monolayer. 3. Surface treatment by silica precursor. The mica covered with an acid mono-... Fig. 3.5 Representation of a scheme of an experiment (upper set of drawings) and the obtained experimental results presented as AFM images (middle part) and cross-sectional profiles (bottom) that provides evidence of silica nucleation and shell formation on biopolymer macromolecules. Scheme of experiment. This includes the following main steps. 1. Protection of the mica surface against silica precipitation. It was covered with a fatty (ara-chidic) acid monolayer transferred from a water substrate with the Langmuir-Blodgett technique. This made the mica surface hydrophobic because of the orientation of the acid molecules with their hydrocarbon chains pointing outwards. 2. Adsorption of carbohydrate macromolecules. Hydrophobically modified cationic hydroxyethylcellulose was adsorbed from an aqueous solution. Hydrocarbon chains of polysaccharide served as anchors to fix the biomacromolecules firmly onto the acid monolayer. 3. Surface treatment by silica precursor. The mica covered with an acid mono-...
Hesselink attempted to calculate theoretical adsorption isotherms for flexible polyelectrolyte chains using one train and one tail conformation (1) and loop-train conformation (2) as functions of the surface charge, polyion charge density, ionic strength, as well as molecular weight. His theoretical treatment led to extensive conclusions, which can be compared with the relevant experimental data. [Pg.40]

In Regalbuto s most recent treatment of surface charging, pH shift data generated at different SLs are fit to the model so as to obtain the best values of and K2 [24], Representative experimental and model results are shown for alumina in Figure 6.15. Having obtained the oxide-charging parameters in the absence of metal adsorption, the parameters can be used with no adjustment in the RPA model to simulate metal uptake. This is described in the next section. [Pg.174]

A rigorous treatment of diffusion to or from a flat surface has been given by Lyklema (1991). Van Leeuwen (1991) has pointed out that in analyzing experimental adsorption data, that are always confined to a certain time window, it is tempting to fit the data to the sum of two or three exponential functions with different arguments. Although such fits are often apparently sucessful, the merit of the fit is purely mathematical a mechanistic interpretation in terms of a first order dependence is usually not justified. With porous materials, diffusion into the pores renders the adsorption process very slow often one gains the impression that the process is irreversible (e.g., Fig. 4.18). [Pg.105]

McKinley, J.P. Jenne, E.A. (1991) Experimental investigation and review of the solids concentration" effect in adsorption studies. Environ. Sci. Technol. 25 2082-2087 McKinnon, W. Choung, J.W. Xu, Z. Einch, J.A. (2000) Magnetic seed in ambient temperature ferrite process applied to acid mine drainage treatment. Environ. Sci. Techn. 34 2575-2581... [Pg.607]


See other pages where Adsorption experimental treatment is mentioned: [Pg.135]    [Pg.706]    [Pg.322]    [Pg.655]    [Pg.685]    [Pg.153]    [Pg.248]    [Pg.252]    [Pg.374]    [Pg.389]    [Pg.113]    [Pg.206]    [Pg.36]    [Pg.179]    [Pg.594]    [Pg.130]    [Pg.5]    [Pg.125]    [Pg.224]    [Pg.668]    [Pg.248]    [Pg.109]    [Pg.373]    [Pg.514]    [Pg.31]    [Pg.187]    [Pg.251]    [Pg.182]    [Pg.313]    [Pg.117]    [Pg.625]    [Pg.199]    [Pg.209]    [Pg.167]    [Pg.48]    [Pg.73]   
See also in sourсe #XX -- [ Pg.407 , Pg.408 , Pg.409 , Pg.410 , Pg.411 ]




SEARCH



Experimental and Theoretical Treatments of Adsorption An

© 2024 chempedia.info