Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adsorption, apparent forms

The most possible reason may be in the higher free energy of the protein adsorption on PolyPROPYL A materials. Chemisorbed neutral poly(succinimide) of molecular weight 13000 apparently forms a diffuse interface as predicted by theory (see Sect. 2.2). Controversially, a short polyethyleneimine exists on a surface in a more flat conformation exhibiting almost no excluded volume and producing... [Pg.152]

Precipitation of Hafnium Hydroxide. In order to interpret the adsorption data it was necessary to determine the conditions which lead to the precipitation of hafnium hydroxide. It is not usually advisable to depend on the solubility product because the information on this quantity is often unreliable for hydroxides of polyvalent metal ions. In addition, "radiocolloids may apparently form much below saturation conditions in radioactive isotope solutions. In the specific case of hafnium hydroxide only two measurements of the solubility seem to have been reported. According to Larson and Gammill (16) K8 = [Hf(OH)22+] [OH ]2 — 4 X 10"26 assuming the existence of only one hydrolyzed species Hf(OH)22+. The second reported value is Kso = [Hf4+] [OH-]4 = 3.7 X 10 55 (15). If one uses the solubility data by Larson and Gammill (Ref. 16, Tables I and III) and takes into consideration all monomeric hafnium species (23) a KBO value of 4 X 10 58 is calculated. [Pg.57]

Polyethylene oxide). This ether-rich polymer (PEO) apparently forms hydrogen bonds with silanol groups, with concomitant adsorption of a PEO layer at silica surfaces. In the case of CZE, the fused silica capillaries are pretreated with 0.1 M NaOH and 0.1 M SDS at the beginning of each day. The typical coating protocol is to flush the capillary with 1.0 M HC1, followed by a solution of 0.2% PEO, then washing with an electrophoretic buffer. The coating process has to be repeated before each run. The EOF is reduced by 60-70%, and the columns thus treated work well for basic proteins. [Pg.251]

It follows from this Fig. that the amount of chemical junctions in silicon rubber increases with increasing fractions of Aerosil. The chemical junctions are apparently formed by scission of PDMS chains under the mechanical forces during milling. However, the fraction of these junctions is the lowest. The fraction of adsorption junctions increases proportionally to the filler content as shown in Fig. 11. The major contribution to the network structure is provided by topological hindrances near the filler surface as shown in Fig. 11. [Pg.798]

The mechanism of the Claus reaction is complicated, and the sequence of the surface reaction steps is not fioUy elucidated (361). The primary step is certainly the strong adsorption of SO2 on acid—base pairs with formation of sulfite and bisulfite species (354—356), which later react with gaseous or weakly adsorbed H2S. The strength of the SO2 adsorption depends on the surface basicity, which is influenced by the amount of sodium present (225) however, it must be taken into account that the reactivity of the formed sulfites is lower on more basic surface sites. Thus, the acid—base properties of the catalyst play a key role in this reaction. According to Clark et al. (362), sulfate and thiosulfate species apparently form in addition to the sulfites. It was proposed that sulfate and thiosulfate react to form [HS404] ions, which then react with H2S to form the S3 sulfur polymorph, which is subsequently converted into cychc Se and Sg molecules. [Pg.382]

The Langmuir-Hinshelwood picture is essentially that of Fig. XVIII-14. If the process is unimolecular, the species meanders around on the surface until it receives the activation energy to go over to product(s), which then desorb. If the process is bimolecular, two species diffuse around until a reactive encounter occurs. The reaction will be diffusion controlled if it occurs on every encounter (see Ref. 211) the theory of surface diffusional encounters has been treated (see Ref. 212) the subject may also be approached by means of Monte Carlo/molecular dynamics techniques [213]. In the case of activated bimolecular reactions, however, there will in general be many encounters before the reactive one, and the rate law for the surface reaction is generally written by analogy to the mass action law for solutions. That is, for a bimolecular process, the rate is taken to be proportional to the product of the two surface concentrations. It is interesting, however, that essentially the same rate law is obtained if the adsorption is strictly localized and species react only if they happen to adsorb on adjacent sites (note Ref. 214). (The apparent rate law, that is, the rate law in terms of gas pressures, depends on the form of the adsorption isotherm, as discussed in the next section.)... [Pg.722]

The apparent activation energy is then less than the actual one for the surface reaction per se by the heat of adsorption. Most of the algebraic forms cited are complicated by having a composite denominator, itself temperature dependent, which must be allowed for in obtaining k from the experimental data. However, Eq. XVIII-47 would apply directly to the low-pressure limiting form of Eq. XVIII-38. Another limiting form of interest results if one product dominates the adsorption so that the rate law becomes... [Pg.726]

Equation 6 shows that the adsorption of component 1 at a partial pressureis reduced in the presence of component 2 as a result of competition for the available surface sites. There ate only a few systems for which this expression (with 5 1 = q 2 = 5 ) provides an accurate quantitative representation, but it provides useful quaUtative or semiquantitative guidance for many systems. In particular, it has the correct asymptotic behavior and provides expHcit recognition of the effect of competitive adsorption. For example, if component 2 is either strongly adsorbed or present at much higher concentration than component 1, the isotherm for component 1 is reduced to a simple linear form in which the apparent Henry s law constant depends onp. ... [Pg.256]

A great many materials have been used as catalyst supports in hydrogena-tion, but most of these catalyst have been in a quest for an improved system. The majority of catalyst supports are some form of carbon, alumina, or silica-alumina. Supports such as calcium carbonate or barium sulfate may give better yields of B in reactions of the type A- B- C, exemplified by acetylenes- cjs-olefins, apparently owing to a weaker adsorption of the intermediate B. Large-pore supports that allow ready escape of B may give better selectivities than smaller-pore supports, but other factors may influence selectivity as well. [Pg.4]

In the potential region where nonequilibrium fluctuations are kept stable, subsequent pitting dissolution of the metal is kept to a minimum. In this case, the passive metal apparently can be treated as an ideally polarized electrode. Then, the passive film is thought to repeat more or less stochastically, rupturing and repairing all over the surface. So it can be assumed that the passive film itself (at least at the initial stage of dissolution) behaves just like an adsorption film dynamically formed by adsorbants. This assumption allows us to employ the usual double-layer theory including a diffuse layer and a Helmholtz layer. [Pg.258]

In contrast, the mono-layer of methanol is built up much more slowly and is not complete until the concentration of methanol in the aqueous mixture is about 35%w/v. The behavior of methanol on the reverse phase is reminiscent of the adsorption of chloroform on the strongly polar silica gel surface. The complementary nature of the silica gel surface and that of the reverse phase is clearly apparent. It is also clear that strongly dispersive solvents might form bi-layers on the reverse phase surface just as polar solutes form bi-layers on the highly polar surface of silica gel. In fact, to date there has been no experimental evidence furnished that would support the formation of bi-layers on the surface of reverse phases, although their formation is likely and such evidence may well be forthcoming in the future. [Pg.78]

The physical meaning of the g (ion) potential depends on the accepted model of an ionic double layer. The proposed models correspond to the Gouy-Chapman diffuse layer, with or without allowance for the Stem modification and/or the penetration of small counter-ions above the plane of the ionic heads of the adsorbed large ions. " The experimental data obtained for the adsorption of dodecyl trimethylammonium bromide and sodium dodecyl sulfate strongly support the Haydon and Taylor mode According to this model, there is a considerable space between the ionic heads and the surface boundary between, for instance, water and heptane. The presence in this space of small inorganic ions forms an additional diffuse layer that partly compensates for the diffuse layer potential between the ionic heads and the bulk solution. Thus, the Eq. (31) may be considered as a linear combination of two linear functions, one of which [A% - g (dip)] crosses the zero point of the coordinates (A% and 1/A are equal to zero), and the other has an intercept on the potential axis. This, of course, implies that the orientation of the apparent dipole moments of the long-chain ions is independent of A. [Pg.41]

Supported metal carbonyl clusters are alternatively formed from mononuclear metal complexes by surface-mediated synthesis [5,13] examples are [HIr4(CO)ii] formed from Ir(CO)2(acac) on MgO and Rh CCOlie formed from Rh(CO)2(acac) on y-Al203 [5,12,13]. These syntheses are carried out in the presence of gas-phase CO and in the absence of solvents. Synthesis of metal carbonyl clusters on oxide supports apparently often involves hydroxyl groups or water on the support surface analogous chemistry occurs in solution [ 14]. A synthesis from a mononuclear metal complex precursor is usually characterized by a yield less than that attained as a result of simple adsorption of a preformed metal cluster, and consequently the latter precursors are preferred when the goal is a high yield of the cluster on the support an exception is made when the clusters do not fit into the pores of the support (e.g., a zeolite), and a smaller precursor is needed. [Pg.214]

Kds are the constants of rates of chemical reactions of oxygen adsorption and desorbtion from ZnO film and Aq are electron work function from ZnO before oxygen gets adsorbed and its variation caused by dipole moment of adsorbed complexes being formed U is the adsorption activation energy of non-electrostatic nature [ M] is the concentration of solvent molecules. Apparently we can write down the following expression for the stationary system ... [Pg.211]

A molecular oxygen state is the most likely to be involved, it would require a barrier of only 67 k.f mol 1 and is exothermic a hydroperoxide state is formed together with NH2(a). When the heats of adsorption of ammonia and oxygen are taken account of, then according to Neurock44,45 there is no apparent activation barrier to N-H activation. [Pg.98]

Certain negative ions such as Cl , Br, CNS , N03 and SO2 show an adsorption affinity to the mercury surface so in case (a), where the overall potential of the dme is zero, the anions transfer the electrons from the Hg surface towards the inside of the drop, so that the resulting positive charges along the surface will form an electric double layer with the anions adsorbed from the solution. Because according to Coulomb s law similar charges repel one another, a repulsive force results that counteracts the Hg surface tension, so that the apparent crHg value is lowered. [Pg.139]

In situation (b) the anion adsorption is compensated by the negative overall potential of the dme. In situation (c), with a further increase in the negative potential, an electric double layer will now be formed with cations from the solution, so that the apparent <7Hg is lowered again. Hence crHg as a function of the negative dme potential, yielding the so-called electrocapillary curve, shows a maximum at about -0.52 V (see Fig. 3.18). [Pg.139]


See other pages where Adsorption, apparent forms is mentioned: [Pg.119]    [Pg.332]    [Pg.308]    [Pg.334]    [Pg.110]    [Pg.181]    [Pg.334]    [Pg.685]    [Pg.410]    [Pg.316]    [Pg.295]    [Pg.109]    [Pg.231]    [Pg.205]    [Pg.210]    [Pg.91]    [Pg.17]    [Pg.97]    [Pg.583]    [Pg.68]    [Pg.162]    [Pg.459]    [Pg.95]    [Pg.647]    [Pg.649]    [Pg.432]    [Pg.231]    [Pg.196]    [Pg.177]    [Pg.824]    [Pg.192]    [Pg.395]    [Pg.115]    [Pg.635]   
See also in sourсe #XX -- [ Pg.15 ]




SEARCH



Apparent adsorption

© 2024 chempedia.info