Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adrenaline synthesis

Cole et al. (1995) reported on knock-out mice with a germ line deletion of GR. They demonstrated that lack of GR leads to perinatal death, atelectasis of the lung, and lack of adrenalin synthesis. To circumvent perinatal lethality, Tranche et al. (1999) and Brewer et al. (2003) generated tissue-specific somatic deletions of GR. This allowed to characterize GR function in the CNS, the immune system, and the liver in more detail. In particular, these approaches revealed novel aspects of organ-specific glucocorticoid physiology such as anxiety-like behavior, growth control, and polyclonal T cell activation. [Pg.546]

Adrenaline synthesis from noradrenaline in response to stress... [Pg.253]

Adrenaline synthesis occurs in the interior of the adrenai gland. [Pg.253]

The pathway for synthesis of the catecholamines dopamine, noradrenaline and adrenaline, illustrated in Fig. 8.5, was first proposed by Hermann Blaschko in 1939 but was not confirmed until 30 years later. The amino acid /-tyrosine is the primary substrate for this pathway and its hydroxylation, by tyrosine hydroxylase (TH), to /-dihydroxyphenylalanine (/-DOPA) is followed by decarboxylation to form dopamine. These two steps take place in the cytoplasm of catecholaminereleasing neurons. Dopamine is then transported into the storage vesicles where the vesicle-bound enzyme, dopamine-p-hydroxylase (DpH), converts it to noradrenaline (see also Fig. 8.4). It is possible that /-phenylalanine can act as an alternative substrate for the pathway, being converted first to m-tyrosine and then to /-DOPA. TH can bring about both these reactions but the extent to which this happens in vivo is uncertain. In all catecholamine-releasing neurons, transmitter synthesis in the terminals greatly exceeds that in the cell bodies or axons and so it can be inferred... [Pg.167]

The chemistry of most of the drugs in this family is quite simple, accounting in part for the very large number of analogues which have been made. The foundation for the chemistry in this series was laid long ago by Stolz in his classic synthesis of the ophthalmic agent adrenal one (3) in which he reacted catechol with chloroacetyl chloride and then displaced the reactive chlorine atom with methylamine to complete the synthesis. Borohydride reduction would have given epinephrine (adrenaline). [Pg.38]

As previously mentioned, the cells of the adrenal medulla are considered modified sympathetic postganglionic neurons. Instead of a neurotransmitter, these cells release hormones into the blood. Approximately 20% of the hormonal output of the adrenal medulla is norepinephrine. The remaining 80% is epinephrine (EPI). Unlike true postganglionic neurons in the sympathetic system, the adrenal medulla contains an enzyme that methylates norepinephrine to form epinephrine. The synthesis of epinephrine, also known as adrenalin, is enhanced under conditions of stress. These two hormones released by the adrenal medulla are collectively referred to as the catecholamines. [Pg.99]

The neurohormonal control of lipid metabolism chiefly affects the mobilization and synthesis of triglycerides in the fat tissue. The lipolysis in tissues is dependent upon the activity of triglyceride lipase. All the regulators that favour the conversion of the inactive (nonphosphorylated) lipase to the active (phosphoiylated) one, stimulate the lipolysis and the release of fatty acids into the blood. Adrenalin... [Pg.210]

Known most famously for their part in the fight or flight response to a threat, challenge or anger, adrenaline (epinephrine) and dopamine from the adrenal medulla and noradrenaline (norepinephrine), mainly from neurones in the sympathetic nervous system are known collectively as catecholamines. Synthesis follows a relatively simple pathway starting with tyrosine (Figure 4.7). [Pg.91]

Synthesis of noradrenaline (norepinephrine) is shown in Figure 4.7. This follows the same route as synthesis of adrenaline (epinephrine) but terminates at noradrenaline (norepinephrine) because parasympathetic neurones lack the phenylethanolamine-N-methyl transferase required to form adrenaline (epinephrine). Acetylcholine is synthesized from acetyl-Co A and choline by the enzyme choline acetyltransferase (CAT). Choline is made available for this reaction by uptake, via specific high-affinity transporters, within the axonal membrane. Following their synthesis, noradrenaline (norepinephrine) or acetylcholine are stored within vesicles. Release from the vesicle occurs when the incoming nerve impulse causes an influx of calcium ions resulting in exocytosis of the neurotransmitter. [Pg.95]

Serotonin (5-hydroxytrptamine, 5-HT) synthesis involves an hydroxylation reaction (catalysed by tryptophan mono-oxygenase) and a decarboxylation step, similar to that in adrenaline (epinephrine) synthesis. [Pg.95]

In addition to their well known role in protein structure, amino acids also act as precursors to a number of other important biological molecules. For example, the synthesis of haem (see also Section 5.3.1), which occurs in, among other tissues, the liver begins with glycine and succinyl-CoA. The amino acid tyrosine which maybe produced in the liver from metabolism of phenylalanine is the precursor of thyroid hormones, melanin, adrenaline (epinephrine), noradrenaline (norepinephrine) and dopamine. The biosynthesis of some of these signalling molecules is described in Section 4.4. [Pg.172]

Biosynthesis and degradation of glycosaminoglycans biosynthesis of collagen, mineralization and demineralization of bone. Fatty acid synthesis and triglyceride storage in adipocytes promoted by insulin and triglyceride hydrolysis and fatty acid release stimulated by glucagon and adrenaline (epinephrine). [Pg.283]

The adrenal medulla synthesizes two catecholamine hormones, adrenaline (epinephrine) and noradrenaline (norepinephrine) (Figure 1.8). The ultimate biosynthetic precursor of both is the amino acid tyrosine. Subsequent to their synthesis, these hormones are stored in intracellular vesicles, and are released via exocytosis upon stimulation of the producer cells by neurons of the sympathetic nervous system. The catecholamine hormones induce their characteristic biological effects by binding to one of two classes of receptors, the a- and )S-adrenergic receptors. These receptors respond differently (often oppositely) to the catecholamines. [Pg.21]


See other pages where Adrenaline synthesis is mentioned: [Pg.298]    [Pg.18]    [Pg.214]    [Pg.298]    [Pg.18]    [Pg.214]    [Pg.26]    [Pg.642]    [Pg.760]    [Pg.43]    [Pg.538]    [Pg.32]    [Pg.33]    [Pg.190]    [Pg.193]    [Pg.347]    [Pg.350]    [Pg.217]    [Pg.301]    [Pg.60]    [Pg.98]    [Pg.214]    [Pg.229]    [Pg.88]    [Pg.229]    [Pg.259]    [Pg.430]    [Pg.318]   
See also in sourсe #XX -- [ Pg.91 , Pg.93 ]

See also in sourсe #XX -- [ Pg.230 , Pg.252 , Pg.253 ]

See also in sourсe #XX -- [ Pg.6 , Pg.23 , Pg.24 ]

See also in sourсe #XX -- [ Pg.86 , Pg.87 ]

See also in sourсe #XX -- [ Pg.111 ]

See also in sourсe #XX -- [ Pg.354 ]

See also in sourсe #XX -- [ Pg.228 , Pg.251 , Pg.251 ]

See also in sourсe #XX -- [ Pg.583 ]




SEARCH



Adrenaline

Adrenalins

© 2024 chempedia.info