Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Addition reactions, alkenes aromatic compounds

A variety of four-membered ring compounds can be obtained with photochemical reactions of aromatic compounds, mainly with the [2 + 2] (ortho) photocycloaddition of alkenes. In the case of aromatic compounds of the benzene type, this reaction is often in competition with the [3 + 2] (meta) cycloaddition, and less frequently with the [4 + 2] (para) cycloaddition (Scheme 5.7) [38-40]. When the aromatic reaction partner is electronically excited, both reactions can occur at the 7t7t singlet state, but only the [2 + 2] addition can also proceed at the %% triplet state. Such competition was also discussed in the context of redox potentials of the reaction partners [17]. Most frequently, it is the electron-active substituents on the aromatic partner and the alkene which direct the reactivity. The [2 + 2] photocycloaddition is strongly favored when electron-withdrawing substituents are present in the substrates. In such a reaction, crotononitrile 34 was added to anisole 33 (Scheme 5.8, reaction 15) [41 ], and only one regioisomer (35) was obtained in good yield. In this transformation, the... [Pg.144]

Examples of photoreactions may be found among nearly all classes of organic compounds. From a synthetic point of view a classification by chromo-phore into the photochemistry of carbonyl compounds, enones, alkenes, aromatic compounds, etc., or by reaction type into photochemical oxidations and reductions, eliminations, additions, substitutions, etc., might be useful. However, photoreactions of quite different compounds can be based on a common reaction mechanism, and often the same theoretical model can be used to describe different reactions. Thus, theoretical arguments may imply a rather different classification, based, for instance, on the type of excited-state minimum responsible for the reaction, on the number and arrangement of centers in the reaction complex, or on the number of active orbitals per center. (Cf. Michl and BonaCid-Kouteck, 1990.)... [Pg.360]

Unlike alkenes, aromatic compounds such as benzene undergo substitution reactions instead of addition reactions. Tlie most common reaction for benzene to undergo is electrophilic aromatic substitution (EAS), although in a few special cases, it can undergo nucleophilic aromatic substitution. [Pg.108]

We will show here the classification procedure with a specific dataset [28]. A reaction center, the addition of a C-H bond to a C=C double bond, was chosen that comprised a variety of different reaction types such as Michael additions, Friedel-Crafts alkylation of aromatic compounds by alkenes, or photochemical reactions. We wanted to see whether these different reaction types can be discerned by this... [Pg.193]

The Pd—C cr-bond can be prepared from simple, unoxidized alkenes and aromatic compounds by the reaction of Pd(II) compounds. The following are typical examples. The first step of the reaction of a simple alkene with Pd(ll) and a nucleophile X or Y to form 19 is called palladation. Depending on the nucleophile, it is called oxypalladation, aminopalladation, carbopalladation, etc. The subsequent elimination of b-hydrogen produces the nucleophilic substitution product 20. The displacement of Pd with another nucleophile (X) affords the nucleophilic addition product 21 (see Chapter 3, Section 2). As an example, the oxypalladation of 4-pentenol with PdXi to afford furan 22 or 23 is shown. [Pg.13]

The reactions of the second class are carried out by the reaction of oxidized forms[l] of alkenes and aromatic compounds (typically their halides) with Pd(0) complexes, and the reactions proceed catalytically. The oxidative addition of alkenyl and aryl halides to Pd(0) generates Pd(II)—C a-hondi (27 and 28), which undergo several further transformations. [Pg.15]

Toluene, an aLkylben2ene, has the chemistry typical of each example of this type of compound. However, the typical aromatic ring or alkene reactions are affected by the presence of the other group as a substituent. Except for hydrogenation and oxidation, the most important reactions involve either electrophilic substitution in the aromatic ring or free-radical substitution on the methyl group. Addition reactions to the double bonds of the ring and disproportionation of two toluene molecules to yield one molecule of benzene and one molecule of xylene also occur. [Pg.175]

Although limited to electron-rich aromatic compounds and alkenes, the Vilsmeier reaction is an important formylation method. When yV,A-dimethylformamide is used in excess, the use of an additional solvent is not necessary. In other cases toluene, dichlorobenzene or a chlorinated aliphatic hydrocarbon is used as solvent. ... [Pg.282]

Our recent studies on effective bromination and oxidation using benzyltrimethylammonium tribromide (BTMA Br3), stable solid, are described. Those involve electrophilic bromination of aromatic compounds such as phenols, aromatic amines, aromatic ethers, acetanilides, arenes, and thiophene, a-bromination of arenes and acetophenones, and also bromo-addition to alkenes by the use of BTMA Br3. Furthermore, oxidation of alcohols, ethers, 1,4-benzenediols, hindered phenols, primary amines, hydrazo compounds, sulfides, and thiols, haloform reaction of methylketones, N-bromination of amides, Hofmann degradation of amides, and preparation of acylureas and carbamates by the use of BTMA Br3 are also presented. [Pg.29]

These intermediates undergo addition reactions with alkenes and aromatic compounds and insertion reactions with saturated hydrocarbons.254... [Pg.946]

Addition of carbenes to Jt-electron excessive aromatic compounds, or those which possess a high degree of bond fixation, is well established. Dihalocarbenes react with naphthalenes with ring expansion to produce benztropylium systems (Scheme 7.8). Loss of hydrogen halide from the initially formed product leads to an alkene which reacts with a second equivalent of the carbene to yield the spirocyclopropyl derivatives in high yield (>95%) [14, 50]. Insertion into the alkyl side chain (see Section 7.2) also occurs, but to a lesser extent [14]. Not unexpectedly, dichlorocarbene adds to phenanthrenes across the 9,10-bond [9, 10, 14], but it is remarkable that the three possible isomeric spiro compounds could be isolated (in an overall yield of 0.05% ) from the corresponding reaction with toluene [14]. [Pg.324]

Effectively, this is another example of the addition of a functional aromatic compound to an alkene, as the Murai reaction, but the mechanism is different. Alkyl substituted pyridine derivatives are interesting molecules for pharmaceutical applications. The a-bond metathesis reaction is typical of early transition metal complexes as we have learnt in Chapter 2. [Pg.397]

I 5 Anodic Reactions of Alkanes, Alkenes, and Aromatic Compounds Tab. 15 Anodic addition to aromatic compounds... [Pg.162]

One can demonstrate the particular stability of aromatic compounds by their characteristic chemical reactions. For example, benzene reacts with bromine only with difficulty and gives bromobenzene, a substitution product (see Section 8.4). This leaves the aromatic ring intact. By contrast, a typical alkene reacts readily with bromine by an addition process... [Pg.44]

Diazoacetic esters, reactions with alkenes, alkynes, heterocyclic and aromatic compounds, 18, 3 26, 2 a-Diazocarbonyl compounds, insertion and addition reactions, 26, 2 Diazomethane ... [Pg.588]

F-Teda BF4 is effective for the selective addition of fluorine to steroids in good yield, re-gioselectively and, in many cases, stereoselectively at the 6- and 16-positions, under very mild reaction conditions (Table 7).92 Further, 6 will also efficiently fluorinate silyl and alkyl enolates, enamides, carbanions, a-alkenes and actived aromatic compounds (Table 8). As an extension of this method F-Teda BF+ has been used for the electrophilic fluorination of (fluorovinyl)tin compounds affording terminal fluoroalkenes (see Table 9).88... [Pg.463]

The addition of hydrogen across multiple bonds is one of the most widely studied of catalytic reactions. Alkenes and alkynes, as well as di- and polyunsaturated systems can all be hydrogenated, provided the suitable experimental conditions are used. Studies on the ways in which these compounds react with hydrogen have revealed very complex reaction patterns. Because of their resonance stabilization, carbocyc-lic aromatic hydrocarbons are more difficult to hydrogenate than are other unsaturated compounds. [Pg.619]

A second major mode of photocydoaddition involves 1.2-addition to the aromatic ring, and this predominates if there is a large difference in electron-donor/acceptor capacity between the aromatic compound and the alkene. It is therefore the major reaction pathway when benzene reacts with an electron-rich alkene such as 1,1-dimethoxyethylene (3.43) or with an electron-deficient alkene such as acrylonitrile (3.441. When substituted benzenes are involved, such as anisole with acrylonitrile (3.45), or benzonitrile with vinyl acetate (3.46), reaction can be quite efficient and regioselective to give products in which the two substituents are on adjacent carbon atoms. [Pg.92]

In addition to being oxidized by the hydroxyl radical, alkenes may react with the N03 radical as has been described by several investigators (52, 56, 66). Listed in Table I are some of the organic nitrates that have been predicted to be produced via reaction of OH and N03 with isoprene and pro-pene. Analogous compounds would be expected from other simple alkenes and from terpenes such as a- and (3-pinene. Other possible organic nitrates may be produced via the oxidation of aromatic compounds (53, 54) and the oxidation of carbonaceous aerosols (67). Quantitative determination of these species has not been made in the ambient atmosphere. [Pg.273]


See other pages where Addition reactions, alkenes aromatic compounds is mentioned: [Pg.53]    [Pg.375]    [Pg.222]    [Pg.265]    [Pg.1086]    [Pg.490]    [Pg.224]    [Pg.718]    [Pg.77]    [Pg.514]    [Pg.396]    [Pg.107]    [Pg.970]    [Pg.77]    [Pg.229]    [Pg.55]    [Pg.94]    [Pg.718]   
See also in sourсe #XX -- [ Pg.90 ]




SEARCH



Addition aromatics

Addition reactions alkenes

Addition reactions compounds

Alkenes aromatic compounds

Aromatic alkenes

Aromatic compounds reactions

Aromatic compounds, addition

Aromatic compounds, addition reactions

© 2024 chempedia.info