Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Addition of nucleophiles to aldehydes

Predicting the Products of the Addition of Nucleophiles to Aldehydes and Ketones... [Pg.739]

Mechanistic insights as proposed by Kumar and coworkers supported the very design of the branching cascade strategy because the successful nucleophiles have utilized the dispersed electrophilic sites over the surface of common precursors 27 beautifully to provide different products via different cascade reactions (Scheme 27.4). In many cases, the reaction sequence apparently begins with the addition of nucleophiles to aldehyde or ketoester moiety and followed by further cyclization on to the chromones moiety (cascades I, III, IV, VI) before the second nucleophilic addition or rearrangement leading to diverse scaffolds. [Pg.409]

Addition-elimination reactions may be carried out under either basic or acidic conditions. We have seen how additions of nucleophiles to aldehydes and ketones (Sections 17-5 through 17-9 Table 17-4) may be catalyzed by either bases or acids. The same is true for additions of nucleophiles to carboxylic acid derivatives. Eliminations from the tetrahedral intermediate are similarly catalyzed Recall that this process is mechanistically just the reverse of addition therefore, the same catalytic effects are observed. Let us examine the roles of both base and acid in detail. [Pg.849]

The additions of nucleophiles to aldehydes and ketones are promoted by coordination of a Lewis acid to the oxygen atom of the carbonyl group. The coordination with the metal enhances the electrophilicity of the C=0 group facilitating the attack of the nucleophile. From a stereochemical point of view, the presence of a Lewis acid is particularly important when a substituent with a heteroatom able to coordinate with the metal is placed next to the carbonyl group. In such cases, the prediction of the stereoselectivity of the reaction requires a chelated reactive conformation as that represented in Figure 4.2. This model is known as Cram s cyclic model and again the attack of flie nucleophile takes place preferentially from the less-hindered side. [Pg.24]

Polypropionate fragment 24 is obtained upon desulfurization (Raney nickel) of the corresponding thiane. It is interesting to note that addition of nucleophile to aldehyde ( )-21 shows exclusive Felkin diastereoface selectivity. One can assume that the transition state of the aforementioned transformation equals that predicted for proline-catalyzed aldol reactions between cyclohexanone... [Pg.276]

In stepwise additions, ketenes are usually the nucleophilic component, so that such additions can be catalyzed by Lewis acids, such as the additions of trimethylsilylketenes to aldehydes, catalyzed by BF3 (Scheme 14) (79JOC733). However, the roles can be reversed, such as in the addition of chlorocyanoketene to benzaldehyde (79JA5435). [Pg.38]

Nucleophilic addition of amines to aldehydes and ketones (Sections 17.10, 17.11) Primary amines undergo nucleophilic addition to the carbonyl group of aldehydes and ketones to form carbinol-amines. These carbinolamines dehydrate under the conditions of their formation to give A/-substituted imines. Secondary amines yield enamines. [Pg.927]

The addition of ammonia to aldehydes or ketones does not generally give useful products. According to the pattern followed by analogous nucleophiles, the initial products would be expected to be hemiaminals, but these compounds are generally unstable. Most imines with a hydrogen on the nitrogen spontaneously poly-... [Pg.1186]

The possible reaction pathways for the stereoselective E- and Z-allylation are illustrated in Scheme 7. 1-Silyl-l,3-dienes 22 react with a Ni-H species in the presence of PPI13 to provide a syn-it-allylnickel species 24, the least substituted allylnickel species, which undergoes nucleophilic addition to an aldehyde at the least substituted allylic terminus to provide ( )-allylsilanc ( )-23. It should be noted that the regioselectivities observed for the Ni-H addition to a diene 22 and nucleophilic addition of 24 to aldehydes are opposite to those observed so far in many precedents in this review (e.g., Eqs. 4 and 6). [Pg.189]

Barrett and coworkers have explored hetero-substituted nitroalkenes in organic synthesis. The Michael addition of nucleophiles to 1-alkoxynitroalkenes or 1-phenylthionitroalkenes followed by oxidative Nef reaction (Section 6.1) using ozone gives a-substituted esters or thiol esters, respectively.41 As an alternative to nucleophilic addition to l-(phenylthio)-nitroalkenes, Jackson and coworkers have used the reaction of nucleophiles with the corresponding epoxides (Scheme 4.4).42 Because the requisite nitroalkenes are readily prepared by the Henry reaction (Chapter 3) of aldehydes with phenylthionitromethane, this process provides a convenient tool for the conversion of aldehydes into ot-substituted esters or thiol esters. [Pg.80]

Recently, ///)H.YL has been found to catalyze the stereoselective addition of nitroalkanes to aldehydes in an. S -selective fashion, which is in agreement with the known stereopreference of this enzyme. This is the first example for a substitution of HCN by another carbon nucleophile, expanding the synthetic scope of this biocatalytic transformation. The addition of nitromethane to different aldehydes with moderate to good yields and enantioselectivity has been demonstrated (Figure 5.9) [58]. However, large amounts of enzyme are required to... [Pg.113]

Tanaka et al.28 have synthesised a series of (S)-chiral Schiff bases as the highly active (yield 69-99%) and enatioselective (ee 50-96%) catalysts in the reaction of addition of dialkylzinc to aldehydes. The stereochemistry of the asymmetric addition was suggested. In a transition state when S-chiral Schiff base was used as chiral source, the alkyl nucleophile attacked Re face of the activated aldehyde and formed the R-configuration alkylated product [13]. [Pg.138]

Vinylsilane to copper transmetallation has entered the literature,93 93a,93b and a system suitable for catalytic asymmetric addition of vinylsilanes to aldehydes was developed (Scheme 24).94 A copper(l) fluoride or alkoxide is necessary to initiate transmetallation, and the work employs a copper(ll) fluoride salt as a pre-catalyst, presumably reduced in situ by excess phosphine ligand. The use of a bis-phosphine was found crucial for reactivity of the vinylcopper species, which ordinarily would not be regarded as good nucleophiles for addition to aldehydes. The highly tailored 5,5 -bis(di(3,5-di-tert-butyl-4-methoxyphenyl)phosphino-4,4 -bis(benzodioxolyl) (DTBM-SEGPHOS) (see Scheme 24) was found to provide the best results, and the use of alkoxysilanes is required. Functional group tolerance has not been adequately addressed, but the method does appear encouraging as a way to activate vinylsilanes for use as nucleophiles. [Pg.809]

It is of some historical interest that Kiliani s cyanohydrin synthesis (24) enabled Emil Fischer (25) to carry out the first asymmetric synthesis. Lapworth (26) used this base-catalyzed nucleophilic 1,2-addition reaction in one of the first studies of a reaction mechanism. Bredig (27,28) appears to have been the first to use quinine (29) in this reaction as the chiral basic catalyst. More recently, others (20) have used basic polymers to catalyze the addition of cyanide to aldehydes. The structure of quinine has been known since 1908 (30). Yet it is of critical importance that Prelog s seminal work on the mechanism of this asymmetric transformation (eq. [4]) could not have begun (16) until the configuration of quinine was established in 1944 (31,32). [Pg.95]

For these and similar reactions recently a variety of Lewis acidic aluminium, rare earth metals, and titanium alkoxides have been applied. Alkoxides have the additional advantage that they can be made as enantiomers using asymmetric alcohols which opens the possibility of asymmetric catalysis. Examples of asymmetric alcohols are bis-naphtols, menthol, tartaric acid derivatives [28], Other reactions comprise activation of aldehydes towards a large number of nucleophiles, addition of nucleophiles to enones, ketones, etc. [Pg.51]

One of the earliest uses of palladium(II) salts to activate alkenes towards additions with oxygen nucleophiles is the industrially important Wacker process, wherein ethylene is oxidized to acetaldehyde using a palladium(II) chloride catalyst system in aqueous solution under an oxygen atmosphere with cop-per(II) chloride as a co-oxidant.1,2 The key step in this process is nucleophilic addition of water to the palladium(II)-complexed ethylene. As expected from the regioselectivity of palladium(II)-assisted addition of nucleophiles to alkenes, simple terminal alkenes are efficiently converted to methyl ketones rather than aldehydes under Wacker conditions. [Pg.552]

The addition of nucleophiles to the carbonyl group may be catalysed by acids obtained by the protonation of the carbonyl oxygen (equilibrium 26). Acid catalysis can also occur during the elimination step which follows the addition step. For example, the reactions of aldehydes with amines (and of all the ammonia derivatives) to form imines are generally assumed to occur in two steps the first is the addition of nucleophile to yield a gem amino alcohol, the second includes the elimination of water from the tetrahedral adduct 138 (see Scheme 45). This elimination is usually thought to be catalysed by electrophiles171,212. [Pg.410]

Addition of nucleophiles to a carbon monoxide ligand of pentacarbonyliron provides anionic acyliron intermediates which can be trapped by electrophiles (H+ or R—X) to furnish aldehydes or ketones [18]. However, carbonyl insertion into alkyl halides using iron carbonyl complexes is more efficiently achieved with disodium tetracarbonylferrate (Collman s reagent) and provides unsymmetrical ketones (Scheme 1.2) [19, 20]. Collman s reagent is extremely sensitive towards air and moisture, but offers a great synthetic potential as carbonyl transfer reagent. It can be prepared by an in situ procedure starting from Fe(CO)5 and Na-naphthalene [20]. [Pg.6]

In a related study Denmark and Fan [22] investigated chiral Lewis base-catalyzed enantioselective a-additions of isocyanides to aldehydes in a Passerini-type reaction (Scheme 9.14). The development of the reaction was based on the concept of Lewis base activation of a weak Lewis acid such as SiCl4 forming a trichlorosilyl-Lewis base adduct which is capable of activating aldehydes towards nucleophilic attack. [Pg.284]

Equation 10.12 states that for the diastereo selectivity of stereogenic additions of nucleophiles to oc-chiral aldehydes it is neither important which conformation the substrate prefers nor is it important of how many conformers of the substrate exist. [Pg.418]

Enantioselective Addition of Dialkylzincs to Aldehydes Using Chiral Amino Alcohols Derived from Ephedrine. Nucleophilic addition of dialkylzinc to aldehydes is usually very slow. Amino alcohols facilitate the addition of Diethylzinc to benzalde-hyde to afford l-phenylpropanol. When chiral amino alcohols possessing the appropriate stracture are used as a precatalyst, optically active secondary alcohols are obtained. Highly enantioselective chiral catalysts derived from ephedrine are known. (lR,25)-N-Isopropylephedrine functions as a precatalyst for the enantioselective addition of diethylzinc to benzaldehyde to afford (R)-l-phenylpropanol with 80% ee in 72% yield. The use of an excess amount of diethylzinc increases the enantioselectivity up to 97% ee (eq 17). ... [Pg.325]


See other pages where Addition of nucleophiles to aldehydes is mentioned: [Pg.6]    [Pg.123]    [Pg.111]    [Pg.19]    [Pg.6]    [Pg.123]    [Pg.111]    [Pg.19]    [Pg.58]    [Pg.108]    [Pg.297]    [Pg.52]    [Pg.581]    [Pg.49]    [Pg.14]    [Pg.402]    [Pg.7]    [Pg.3]    [Pg.245]    [Pg.214]    [Pg.63]    [Pg.430]    [Pg.58]   
See also in sourсe #XX -- [ Pg.166 , Pg.167 , Pg.168 , Pg.169 , Pg.170 ]




SEARCH



Acid catalysis of nucleophilic addition to aldehydes and

Addition aldehydes

Addition of aldehydes

Addition to aldehydes

Additions of nucleophiles

Aldehydes nucleophiles

Aldehydes nucleophilic addition

Nucleophilic addition to

© 2024 chempedia.info