Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Addition-dehydration, aldol reaction

The Robinson annulation consists of a Michael addition, an aldol reaction, and a dehydration. In the Michael addition the nucleophilic ketone is converted into an enol by protonation and deprotonation. The enol then adds to the protonated Michael acceptor. Deprotonation of the positively charged O, protonation of C of the enol, and deprotonation of O then give the overall Michael addition product. [Pg.137]

There is also another similar case in which 5-oxohexanal was employed as functionalized Michael donor undergoing Michael addition/intramolecular aldol reaction with aromatic enals (Scheme 7.3), which also ended up with a final dehydration step leading to the formation of functionalized cyclohexenes. Under the optimized reaction conditions, the final compounds were obtained in moderate yields but with excellent enantioselect vities and as single diaster-eoisomers. It should be pointed out that, from the mechanistic point of view, a dual activation of the 5-oxohexanal via enamine formation) and the a,p-unsaturated aldehyde via iminium ion formation) might operate in this case in the catalytic cycle, although no mechanistic proposal was provided by the authors. [Pg.247]

The addition of the a-carbon of an enolizable aldehyde or ketone 1 to the carbonyl group of a second aldehyde or ketone 2 is called the aldol reaction It is a versatile method for the formation of carbon-carbon bonds, and is frequently used in organic chemistry. The initial reaction product is a /3-hydroxy aldehyde (aldol) or /3-hydroxy ketone (ketol) 3. A subsequent dehydration step can follow, to yield an o ,/3-unsaturated carbonyl compound 4. In that case the entire process is also called aldol condensation. [Pg.4]

Efforts were made by Garcia Gonzalez and his coworkers to elucidate the mechanism of this reaction. In one of the working hypotheses, it was considered that the aldehydo form of the sugar and the 1,3-dicarbonyl compound undergo an aldol reaction to yield a 2-C-(alditol-l-yl)-l,3-dicar-bonyl compound, which is then dehydrated to form the furan. This hypothesis was supported by the isolation of the aldol-addition product of... [Pg.13]

Iminium ions are intermediates in a group of reactions that form ,( -unsaturated compounds having structures corresponding to those formed by mixed aldol addition followed by dehydration. These reactions are catalyzed by amines or buffer systems containing an amine and an acid and are referred to as Knoevenagel condensations,2U The reactive electrophile is probably the protonated form of the imine, since it is a more reactive electrophile than the corresponding carbonyl compound.212... [Pg.147]

Lewis-Acid Catalyzed. Recently, various Lewis acids have been examined as catalyst for the aldol reaction. In the presence of complexes of zinc with aminoesters or aminoalcohols, the dehydration can be avoided and the aldol addition becomes essentially quantitative (Eq. 8.97).245 A microporous coordination polymer obtained by treating anthracene- is (resorcinol) with La(0/Pr)3 possesses catalytic activity for ketone enolization and aldol reactions in pure water at neutral pH.246 The La network is stable against hydrolysis and maintains microporosity and reversible substrate binding that mimicked an enzyme. Zn complexes of proline, lysine, and arginine were found to be efficient catalysts for the aldol addition of p-nitrobenzaldehyde and acetone in an aqueous medium to give quantitative yields and the enantiomeric excesses were up to 56% with 5 mol% of the catalysts at room temperature.247... [Pg.268]

Crossed aldol condensations, where both aldehydes (or other suitable carbonyl compounds) have a-H atoms, are not normally of any preparative value as a mixture of four different products can result. Crossed aldol reactions can be of synthetic utility, where one aldehyde has no a-H, however, and can thus act only as a carbanion acceptor. An example is the Claisen-Schmidt condensation of aromatic aldehydes (98) with simple aliphatic aldehydes or (usually methyl) ketones in the presence of 10% aqueous KOH (dehydration always takes place subsequent to the initial carbanion addition under these conditions) ... [Pg.226]

Rate and equilibrium constants have been determined for the aldol condensation of a, a ,a -trifluoroacetophenone (34) and acetone, and the subsequent dehydration of the ketol (35) to the cis- and fraw -isomeric enones (36a) and (36b)." Hydration of the acetophenone, and the hydrate acting as an acid, were allowed for. Both steps of the aldol reaction had previously been subjected to Marcus analyses," and a prediction that the rate constant for the aldol addition step would be 10" times faster than that for acetophenone itself is borne out. The isomeric enones are found to equilibrate in base more rapidly than they hydrate back to the ketol, consistent with interconversion via the enolate of the ketol (37), which loses hydroxide faster than it can protonate at carbon. [Pg.10]

The addition prodnct from aldol reactions frequently dehydrates by heating in acid or in base... [Pg.362]

Alkane production from sugars by aqueous phase dehydration/hydrogenation reactions has the advantage that most of the alkane fraction is spontaneously separated from the aqueous phase. Unfortunately, the major compound produced by this process is hexane, which has a low value as a gasoline additive due to its relatively high volatility. This limitation has been partially overcome by promoting a base-catalyzed aldol condensation step which links carbohydrate-derived units via formation C-C bonds to form heavier alkanes ranging from C to C15 [151]. [Pg.214]

Entries 4 and 5 in Scheme 2.1 depict acid-catalyzed aldol reactions. In entry 4, condensation is accompanied by dehydration. In entry 5, a /i-chloroketone is formed by addition of hydrogen chloride to the enone. [Pg.60]

Aldol addition and condensation reactions involving two different carbonyl compounds are called mixed aldol reactions. For these reactions to be useful as a method for synthesis, there must be some basis for controlling which carbonyl component serves as the electrophile and which acts as the enolate precursor. One of the most general mixed aldol condensations involves the use of aromatic aldehydes with alkyl ketones or aldehydes. Aromatic aldehydes are incapable of enolization and cannot function as the nucleophilic component. Furthermore, dehydration is especially favorable because the resulting enone is conjugated with the aromatic ring. [Pg.60]

A particularly important example is the Robinson annulation, a procedure which constructs a new six-membered ring from a ketone.83 84 The reaction sequence starts with conjugate addition of the enolate to methyl vinyl ketone or a similar enone. This is followed by cyclization involving an intramolecular aldol addition. Dehydration frequently occurs to give a cyclohexenone derivative. Scheme 2.10 shows some examples of Robinson annulation reactions. [Pg.89]

In the majority of dehydration reactions, heterocyclic compounds are formed, rather than carbocyclic compounds. Many possibilities for formation of carbocyclic compounds exist, but these are important only if (a) the heterocyclic or acyclic tautomers cannot undergo further elimination reactions, or (b) the conditions of reaction greatly favor the formation of an acyclic tautomer capable of affording only the carbocyclic compound. Both five- and six-membered carbocyclic compounds have been isolated, with reductic acid being the compound most frequently reported. Ring closure occurs by an inter-molecular, aldol reaction that involves the carbonyl group and an enolic structure. Many examples of these aldol reactions that lead to formation of carbocyclic rings have been studied.47 As both elimination and addition of a proton are involved, the reaction occurs in both acidic and basic solutions. As examples of the facility of this reaction, pyruvic acid condenses spontaneously to a dibasic acid at room temperature in dilute solution, and such 8-diketones as 29 readily cyclize to form cyclohexenones, presumably by way of 30, either in acid or base. [Pg.174]

The Kotsuki group investigated the effect of high-pressure conditions on the direct proline-catalyzed aldol reaction [79a], a process which, interestingly, does not require use of DMSO as co-solvent. Use of high-pressure conditions led to suppression of the formation of undesired dehydrated by-product and enhancement of the yield. Study of the substrate range with a range of aldehydes and ketones revealed that enantioselectivity was usually comparable with that obtained from experiments at atmospheric pressure. Additionally, proline catalyzed aldol reactions in ionic liquids, preferably l-butyl-3-methylimidazolium hexafluorophosphate, have been successfully carried out [79b,c]. [Pg.151]

In the synthesis we should not wish to make 21 as it would cyclise and, in any case, we d rather reduce nitrile, nitro and alkene all in the same step by catalytic hydrogenation. The very simple method used for the conjugate addition is possible only because of the slow aldol reaction of the hindered aldehyde 24. The aldol 25, also called a Henry reaction, needs a separate dehydration step but the three functional groups in 26 are reduced in one step in good yield.7... [Pg.163]

Similar mechanisms account for the double bond geometry obtained in aldol reactions followed by dehydration to give a,(3-unsaturated carbonyl compounds. Any Z-alkene that is formed is equilibrated to Eby reversible Michael addition during the reaction. [Pg.807]

The tributyltin enolates 74 are readily prepared from the corresponding enol acetates and tributyltin methoxide in the absence of solvent [34]. The tin enolates thus obtained occur in the 0-Sn form and/or the C-Sn form, and both species can be used for the aldol reaction of this system. Although the tin enolates themselves have adequate reactivity toward aldehydes [34c], in the presence of the BINAP silver(I) catalyst the reaction proceeds much faster even at -20 °C. Optimum conditions entail the use of THF as solvent and the results employing these conditions in the catalytic enan-tioselective aldol reaction of a variety of tributyltin enolates with typical aromatic, a,/3-unsaturated, and aliphatic aldehydes are summarized in Table 2. TTie characteristic features are (i) All reactions proceed to furnish the corresponding aldol adducts 75 in moderate to high yield in the presence of 10 mol % (i )-BINAP AgOTf complex at -20 °C for 8 h, and no dehydrated aldol adduct is observed (ii) with an a,j3-unsaturated aldehyde, the 1,2-addition reaction takes place exclusively (entry 3) (iii) a bulky alkyl substituent of tin enolate increases the enantioselectivity of the aldol reaction. For instance, the highest ee (95 % ee) is obtained when the tin enolate prepared from pinacolone 77 or rert-butyl ethyl ketone 79 is added to aldehydes (entries 2, 7, and 8) (iv) addition of the cyclohexanone-derived enol tributylstannane 78 (( )-... [Pg.584]

The cyclopentadienone B is antl-aromatic (four delocalized electrons) and is probably not formed. The first conjugate addition probably starts before the dehydration of the second aldol reaction. [Pg.239]

Steps 1, 3 phosphate transfers steps 2, 5, 8 i.somerizations step 4 retro-aldol reaction step 5 oxidation and nucleophilic acyl substitution steps 7, 10 phosphate transfers step 9 E2 dehydration Nucleophilic acyl substitution of acetyl dihydrolipoamide by coenzyme A Cl and C6 of glucose become -CH groups C3 and C4 become CO -Citrate and isocitrate E2 elimination of water, followed by conjugate addition (CH3)2CHCH2COCOr E2 reaction... [Pg.1317]

The Robinson annulation has three distinct steps the Michael addition of the enol or enolate across the double bond of the a,(3-unsaturated ketone to produce a 1,5-diketone (Michael adduct), followed by an intramolecular aldol reaction, which affords a cyclic (3-hydroxy ketone (keto alcohol), and finally a base-catalyzed dehydration which gives rise to the substituted cyclohexenone. An alternative mechanism via disrotatory electrocyclic ring closure is possible. ... [Pg.384]


See other pages where Addition-dehydration, aldol reaction is mentioned: [Pg.384]    [Pg.287]    [Pg.1222]    [Pg.360]    [Pg.361]    [Pg.385]    [Pg.397]    [Pg.100]    [Pg.287]    [Pg.61]    [Pg.80]    [Pg.242]    [Pg.87]    [Pg.87]    [Pg.349]    [Pg.235]    [Pg.8]    [Pg.166]    [Pg.192]    [Pg.193]   


SEARCH



Addition-dehydration the aldol reaction

Additive aldol reaction

Aldol addition

Aldol addition reaction

Aldol reaction dehydration

Reactions dehydration

© 2024 chempedia.info