Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Michael protonation

The reactions of pyrroles with dimethyl acetylenedicarboxylate (DMAD) have been extensively investigated. In the presence of a proton donor the Michael adducts (125) and (126) are formed. However, under aprotic conditions the reversible formation of the 1 1 Diels-Alder adduct (127) is an important reaction. In the case of the adduct from 1-methylpyrrole, reaction with a further molecule of DMAD can occur to give a dihydroindole (Scheme 48) (82H(19)1915). [Pg.65]

Unsubstituted 2,1-benzisoxazoles undergo C(3)-proton abstraction with base to give an intermediate iminoketene which can undergo further reaction with nucleophiles. However, alternative Michael addition pathways are possible and these have been discussed (81AHC(29)l,p.56). [Pg.31]

In contrast, tertiary amines do not possess a proton to transfer, and the reaction of the Michael-type addition adduct with ECA can only initiate polymerization to form high molecular weight adhesive polymer, as shown earlier in Scheme 1. [Pg.863]

The mechanism is presumed to involve a pathway related to those proposed for other base-catalyzed reactions of isocyanoacetates with Michael acceptors. Thus base-induced formation of enolate 9 is followed by Michael addition to the nitroalkene and cyclization of nitronate 10 to furnish 11 after protonation. Loss of nitrous acid and aromatization affords pyrrole ester 12. [Pg.71]

Pyridine and dimethyl acetylenedicarboxylate in methanol yield - a mixture of (33) and (34). It is tempting to assume that a zwitterion (30) is first formed and that this then adds a proton followed by a methoxide ion (Michael addition) under the influence of both the positive charge on the ring and the assisting ester group. The resulting structure (31) could then add another molecule of the ester and cyclize, as indicated, to (32). Subsequent aromatization accompanied by loss of one, or the other, substituent at position 3 would lead to the two products, (33) and (34), actually isolated. [Pg.132]

Compound 68 can also be obtained by an acid-catalyzed cyclization of 42, which was prepared by the Michael addition reaction of 39 to mesityl oxide as shown in Section IV.A. As for the product 69, the presence of the tosyloxy group at the 5 position instead of the 6 position is determined, utilizing the anisotropy effect of the 1-acetyl group to the C-7 proton, by comparing its H NMR spectrum with that of 70, obtained in 69% yield by the treatment of 69 with NaH and AcCl. [Pg.114]

Another important feature of the Nef reaction is the possible use of a CH-NO2 function as an umpoled carbonyl function. A proton at a carbon a to a nitro group is acidic, and can be abstracted by base. The resulting anionic species has a nucleophilic carbon, and can react at that position with electrophiles. In contrast the carbon center of a carbonyl group is electrophilic, and thus reactive towards nucleophiles. 1,4-Diketones 4 can for example be prepared from a-acidic nitro compounds by a Michael additionfNef reaction sequence " ... [Pg.211]

The Gabriel-Cromwell aziridine synthesis involves nucleophilic addition of a formal nitrene equivalent to a 2-haloacrylate or similar reagent [29]. Thus, there is an initial Michael addition, followed by protonation and 3-exo-tet ring-closure. Asymmetric variants of the reaction have been reported. N-(2-Bromo)acryloyl camphor-sultam, for example, reacts with a range of amines to give N-substituted (azir-idinyl)acylsultams (Scheme 4.23) [30]. [Pg.128]

Michael addition of alkyl organometallic reagents to a,/ -disubstituted nitroalkenes followed by protonation of the intermediate nitronate anion generally gives mixtures of syn- and anti-diastereomers with poor diastereoselectivity19. [Pg.1018]

If the carbanion has even a short lifetime, 6 and 7 will assume the most favorable conformation before the attack of W. This is of course the same for both, and when W attacks, the same product will result from each. This will be one of two possible diastereomers, so the reaction will be stereoselective but since the cis and trans isomers do not give rise to different isomers, it will not be stereospecific. Unfortunately, this prediction has not been tested on open-chain alkenes. Except for Michael-type substrates, the stereochemistry of nucleophilic addition to double bonds has been studied only in cyclic systems, where only the cis isomer exists. In these cases, the reaction has been shown to be stereoselective with syn addition reported in some cases and anti addition in others." When the reaction is performed on a Michael-type substrate, C=C—Z, the hydrogen does not arrive at the carbon directly but only through a tautomeric equilibrium. The product naturally assumes the most thermodynamically stable configuration, without relation to the direction of original attack of Y. In one such case (the addition of EtOD and of Me3CSD to tra -MeCH=CHCOOEt) predominant anti addition was found there is evidence that the stereoselectivity here results from the final protonation of the enolate, and not from the initial attack. For obvious reasons, additions to triple bonds cannot be stereospecific. As with electrophilic additions, nucleophilic additions to triple bonds are usually stereoselective and anti, though syn addition and nonstereoselective addition have also been reported. [Pg.977]

In addition to a-additions to isocyanides, copper oxide-cyclohexyl isocyanide mixtures are catalysts for other reactions including olefin dimerization and oligomerization 121, 125, 126). They also catalyze pyrroline and oxazoline formation from isocyanides with a protonic a-hydrogen (e.g., PhCH2NC or EtOCOCHjNC) and olefins or ketones 130), and the formation of cyclopropanes from olefins and substituted chloromethanes 131). The same catalyst systems also catalyze Michael addition reactions 119a). [Pg.49]

Adiponitrile is produced at over 1 million tpa and, being used in the manufacture of hexamethylene diamine and (to a small extent) adipic acid, it is by far the highest-volume organic material that is produced electro-chemically. The mechanism (Scheme 7.13) involves electrolytic reduction of acrylonitrile followed by protonation, further reduction, Michael addition and a final protonation step. [Pg.230]

The decarboxylation reaction usually proceeds from the dissociated form of a carboxyl group. As a result, the primary reaction intermediate is more or less a carbanion-like species. In one case, the carbanion is stabilized by the adjacent carbonyl group to form an enolate intermediate as seen in the case of decarboxylation of malonic acid and tropic acid derivatives. In the other case, the anion is stabilized by the aid of the thiazolium ring of TPP. This is the case of transketolases. The formation of carbanion equivalents is essentially important in the synthetic chemistry no matter what methods one takes, i.e., enzymatic or ordinary chemical. They undergo C—C bond-forming reactions with carbonyl compounds as well as a number of reactions with electrophiles, such as protonation, Michael-type addition, substitution with pyrophosphate and halides and so on. In this context,... [Pg.337]

The intramolecular asymmetric Stetter reaction of aliphatic aldehydes is generally more difficult to achieve due to the presence of acidic a-protons. Rovis and co-workers have demonstrated that the NHC derived from pre-catalyst 130 promotes the intramolecular Stetter cyclisation with enoate and alkyhdene malonate Michael acceptors 133. Cyclopentanones are generally accessed in excellent yields and enantioselectivities, however cyclohexanones are obtained in significantly lower yields unless very electron-deficient Michael acceptors are employed... [Pg.277]

Rovis and co-workers further extended the scope of the reaction to the enantio-and diastereoselective cyclisation of a,P-disubstituted Michael acceptors 137. The high diastereoselectivity of the process relies on selective protonation of the resnltant enolate after conjugate addition. It was found that HMDS (formed dnring deprotonation of the triazolium salt pre-catalyst) was detrimental to the... [Pg.278]

A surprising exception has been reported with evidence for a cleavage reaction in the case of divinyl sulphone. In non-aqueous and slightly acidic media, the behaviour of a., ji-unsaturated aromatic sulphones is also complex (see Table 7) since the cleavage and the saturation may compete. Strongly electrophilic double bonds undergo Michael additions in aprotic solvents by slowly protonated anions. Transfer of labile hydrogen may also lead to unactivated bases. It is noteworthy that in numerous cases (Table 6) the saturation is the preferred route. [Pg.1021]

Anionic domino processes are the most often encountered domino reactions in the chemical literature. The well-known Robinson annulation, double Michael reaction, Pictet-Spengler cyclization, reductive amination, etc., all fall into this category. The primary step in this process is the attack of either an anion (e. g., a carban-ion, an enolate, or an alkoxide) or a pseudo anion as an uncharged nucleophile (e. g., an amine, or an alcohol) onto an electrophilic center. A bond formation takes place with the creation of a new real or pseudo-anionic functionality, which can undergo further transformations. The sequence can then be terminated either by the addition of a proton or by the elimination of an X group. [Pg.48]

This finding is also in agreement with another three-component Michael/aldol addition reaction reported by Shibasaki and coworkers [14]. Here, as a catalyst the chiral AlLibis[(S)-binaphthoxide] complex (ALB) (2-37) was used. Such hetero-bimetallic compounds show both Bronsted basicity and Lewis acidity, and can catalyze aldol [15] and Michael/aldol [14, 16] processes. Reaction of cyclopentenone 2-29b, aldehyde 2-35, and dibenzyl methylmalonate (2-36) at r.t. in the presence of 5 mol% of 2-37 led to 3-hydroxy ketones 2-38 as a mixture of diastereomers in 84% yield. Transformation of 2-38 by a mesylation/elimination sequence afforded 2-39 with 92 % ee recrystallization gave enantiopure 2-39, which was used in the synthesis of ll-deoxy-PGFla (2-40) (Scheme 2.8). The transition states 2-41 and 2-42 illustrate the stereochemical result (Scheme 2.9). The coordination of the enone to the aluminum not only results in its activation, but also fixes its position for the Michael addition, as demonstrated in TS-2-41. It is of importance that the following aldol reaction of 2-42 is faster than a protonation of the enolate moiety. [Pg.53]

Ono and Kamimura have found a very simple method for the stereo-control of the Michael addition of thiols, selenols, or alcohols. The Michael addition of thiolate anions to nitroalkenes followed by protonation at -78 °C gives anti-(J-nitro sulfides (Eq. 4.8).11 This procedure can be extended to the preparation of a/jti-(3-nitro selenides (Eq. 4.9)12 and a/jti-(3-nitro ethers (Eq. 4.10).13 The addition products of benzyl alcohol are converted into P-amino alcohols with the retention of the configuration, which is a useful method for anri-P-amino alcohols. This is an alternative method of stereoselective nitro-aldol reactions (Section 3.3). The anti selectivity of these reactions is explained on the basis of stereoselective protonation to nitronate anion intermediates. The high stereoselectivity requires heteroatom substituents on the P-position of the nitro group. The computational calculation exhibits that the heteroatom covers one site of the plane of the nitronate anion.14... [Pg.73]

Derivatization of the optically active aldehydes to imines has been used for determination of their enantiomeric excess. Chi et al.3 have examined a series of chiral primary amines as a derivatizing agent in determination of the enantiomeric purity of the a-substituted 8-keto-aldehydes obtained from catalysed Michael additions. The imine proton signals were well resolved even if the reaction was not completed. The best results were obtained when chiral amines with —OMe or —COOMe groups were used [2], The differences in chemical shifts of diastereo-meric imine proton were ca. 0.02-0.08 ppm depending on amine. This method has been also used for identification of isomers of self-aldol condensation of hydrocinnamaldehyde. [Pg.129]

Michael addition in the absence of any catalytic agent has been reported for dialkyl and diaryl phosphites and thiophosphites with a-cyanoacrylate esters and a-cyanoacrylic acid.444 Yields of the conjugate addition products were moderate to good. The regiochemistry of this process is the opposite of that previously reported for similar additions to ketene acetals, the latter presumably proceeding by initial protonation of the distal olefinic carbon site.445... [Pg.67]


See other pages where Michael protonation is mentioned: [Pg.508]    [Pg.508]    [Pg.164]    [Pg.400]    [Pg.2]    [Pg.60]    [Pg.4]    [Pg.292]    [Pg.121]    [Pg.292]    [Pg.151]    [Pg.466]    [Pg.467]    [Pg.755]    [Pg.76]    [Pg.411]    [Pg.1021]    [Pg.77]    [Pg.1022]    [Pg.1310]    [Pg.529]    [Pg.411]    [Pg.202]    [Pg.370]    [Pg.171]    [Pg.141]    [Pg.189]    [Pg.69]    [Pg.242]    [Pg.55]   
See also in sourсe #XX -- [ Pg.112 ]




SEARCH



© 2024 chempedia.info