Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Activity from experimental data

We see in Table XII. 1 that we cannot separately identify the terms in the rate-constant expression for the thermodynamics equation or the collision theories without special assumptions. A complete identification of all the terms, frequencies, energies of activation and entropies of activation from experimental data is possible only for the Arrhenius equation and the transition-state theory. [Pg.276]

Scale-up is the process of developing a plant design from experimental data obtained from a unit many orders of magnitude smaller. This activity is considered successful if the commercial plant produces the product at plaimed rates, for plaimed costs, and of desired quaUty. This step from pilot plant to full-scale operation is perhaps the most precarious of all the phases of developing a new process because the highest expenses ate committed at the stages when the greatest risks occur. [Pg.40]

The enU opy of activation may be estimated from experimental data for gaseous molecules, and in the special case of HI formation, which may be regarded as involving the intermediate formation of tire dimer H2I2, using the general empirical relationship... [Pg.49]

Some quantities associated with the rates and mechanism of a reaction are determined. They include the reaction rate under given conditions, the rate constant, and the activation enthalpy. Others are deduced reasonably directly from experimental data, such as the transition state composition and the nature of the rate-controlling step. Still others are inferred, on grounds whose soundness depends on the circumstances. Here we find certain features of the transition state, such as its polarity, its stereochemical arrangement of atoms, and the extent to which bond breaking and bond making have progressed. [Pg.10]

Activation Volume and Free Energy Calculated from Experimental Data... [Pg.340]

Like its chemical potential, the activity of an individnal ion cannot be determined from experimental data. For this reason the parameters of electrolyte activity % and mean ionic activity are nsed, which are defined as follows ... [Pg.40]

The prediction of the properties of molecules from a knowledge of their structure (quantitative structure-property relationships [QSPRs] or quantitative structure-activity relationships [QSARs]). ANNs can be used to determine QSPRs or QSARs from experimental data and, hence, predict the properties of a molecule, such as its toxicity in humans, from its structure. [Pg.10]

As mentioned in Section II. C., the concerted bond cleavage of 1.2-dioxetane derivatives has been proposed to be of general importance in respect of the excitation step of a large number of chemiluminescence reactions. The first experimental results concerning simple dioxetanes were obtained by M. M. Rauhut and coworkers in their work on activated oxalic ester chemiluminescence 24>. From experimental data on the reaction of e.g. bis (2.4-dinitrophenyl)oxalate with hydrogen peroxide in the presence of rubrene, they concluded that 1.2-dioxetanedione... [Pg.86]

E is called the energy of activation and k0 the preexponential factor. From experimental data, the constants are found with the linearized plot, Eq 2.10. [Pg.45]

Gouy-Chapman, Stern, and triple layer). Methods which have been used for determining thermodynamic constants from experimental data for surface hydrolysis reactions are examined critically. One method of linear extrapolation of the logarithm of the activity quotient to zero surface charge is shown to bias the values which are obtained for the intrinsic acidity constants of the diprotic surface groups. The advantages of a simple model based on monoprotic surface groups and a Stern model of the electric double layer are discussed. The model is physically plausible, and mathematically consistent with adsorption and surface potential data. [Pg.54]

In general, the formulation of the problem of vapor-liquid equilibria in these systems is not difficult. One has the mass balances, dissociation equilibria in the solution, the equation of electroneutrality and the expressions for the vapor-liquid equilibrium of each molecular species (equality of activities). The result is a system of non-linear equations which must be solved. The main thermodynamic problem is the relation of the activities of the species to be measurable properties, such as pressure and composition. In order to do this a model is needed and the parameters in the model are usually obtained from experimental data on the mixtures involved. Calculations of this type are well-known in geological systems O) where the vapor-liquid equilibria are usually neglected. [Pg.49]

Yoon and Chae28 have described the DCA-induced photochemical conversion of the cyclopentadiene derivatives 63 into several products. However, only the awri-Bredt adduct 64 is different from those obtained by thermal activation. The experimental data collected have implicated a triplex intermediate 65 in the formation of 64. This triplex is the result of interaction between the diene, the non-conjugated alkene component and the sensitizer. While a mixture of cyclopentadienes was used, it is likely that the products 64 are formed exclusively from the 2-isomer 66. [Pg.266]

Although the potential energy functions can be made to reproduce thermodynamic solvation data quite well, they are not without problems. In some cases, the structure of the ion solvation shell, and in particular the coordination number, deviates from experimental data. The marked sensitivity of calculated thermodynamic data for ion pairs on the potential parameters is also a problem. Attempts to alleviate these problems by introducing polarizable ion-water potentials (which take into account the induced dipole on the water caused by the ion strong electric field) have been made, and this is still an active area of research. [Pg.146]

DETERMINATION OF NONELECTROLYTE ACTIVITIES AND EXCESS GIBBS FUNCTIONS FROM EXPERIMENTAL DATA... [Pg.385]

An alternative approach is to estimate activity coefficients of the solvents from experimental data and correlate these coefficients using, for example, the Wilson equation. Rousseau et al. (3) and Jaques and Furter (4) have used the Wilson equation, as well as other integrated forms of the Gibbs-Duhem equation, to show the utility of this approach. These authors found it necessary, however, to modify the definitions of the solvent reference states so that the results could be normalized. [Pg.43]

In this chapter the influence of high pressure on the rates of different types of reactions is considered. For this purpose, first the molecular theory of reactions at high pressure is briefly presented. The key parameter, the activation volume, is then explained, and its evaluation from experimental data as well as the theoretical prediction are outlined. Examples show the magnitude of the activation volume of some high-pressure reactions of scientific and industrial importance. [Pg.67]

Evaluation of the activation volume from experimental data... [Pg.72]

Values of the activity coefficients are deduced from experimental data of vapor-liquid equilibria and correlated or extended by any one of several available equations. Values also may be calculated approximately from structural group contributions by methods called UNIFAC and ASOG. For more than two components, the correlating equations favored nowadays are the Wilson, the NRTL, and UNIQUAC, and for some applications a solubility parameter method. The fust and last of these are given in Table 13.2. Calculations from measured equilibrium compositions are made with the rearranged equation... [Pg.373]

Systemin exerts its biological activity at extremely low concentrations (fmol/plant). Therefore, in analogy to animal systems, proteases have to be postulated that inactivate systemin and clear the system from residual active hormone. Experimental data indeed support the existence of such enzymes. Felix and Boiler observed that the transient nature of systemin-triggered alkalinization response in L. peruvianum cells is due to proteolytic inactivation of systemin rather than desensitization of the perception system [26]. Inactivation of systemin was, in fact, observed in... [Pg.375]

To reduce the number of parameters in the kinetic equations that are to be determined from experimental data, we used the following considerations. The values klt k2, and k4 that enter into the definition of the constant L, (236), are of analogous nature they indicate the fraction of the number of impacts of gas molecules upon a surface site resulting in the reaction. So the corresponding preexponential factors should be approximately the same (if these elementary reactions are adiabatic). Then, since k1, k2, and k4 are of the same order of magnitude, their activation energies should be almost identical. It follows that L can be considered temperature independent. [Pg.238]

With (335) it was found from experimental data that / = 1.77 x 10 2 atm at 450°C. The constant / increases with temperature according to the Arrhenius equation with effective activation energy Et = 26.0 kcal/mol (101). [Pg.261]

Taking m = 0.25, we found numerical values of constants in (372) from experimental data for activated charcoal Bayer. These constants are described by the equations... [Pg.272]


See other pages where Activity from experimental data is mentioned: [Pg.250]    [Pg.250]    [Pg.1296]    [Pg.49]    [Pg.92]    [Pg.142]    [Pg.79]    [Pg.148]    [Pg.117]    [Pg.394]    [Pg.262]    [Pg.323]    [Pg.551]    [Pg.160]    [Pg.145]    [Pg.263]    [Pg.324]    [Pg.41]    [Pg.2]    [Pg.42]    [Pg.515]    [Pg.448]    [Pg.2]   
See also in sourсe #XX -- [ Pg.346 , Pg.347 , Pg.348 , Pg.349 , Pg.350 , Pg.351 , Pg.352 , Pg.353 , Pg.354 , Pg.355 , Pg.356 ]




SEARCH



Activation evaluation from experimental data

Activity Data

Activity coefficient from experimental data

Activity function from experimental data

© 2024 chempedia.info