Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Activity coefficient-models multicomponent excess Gibbs energy

Appendix A9.2 Multicomponent Excess Gibbs Energy (Activity Coefficient) Models... [Pg.476]

The local composition model (LCM) is an excess Gibbs energy model for electrolyte systems from which activity coefficients can be derived. Chen and co-workers (17-19) presented the original LCM activity coefficient equations for binary and multicomponent systems. The LCM equations were subsequently modified (1, 2) and used in the ASPEN process simulator (Aspen Technology Inc.) as a means of handling chemical processes with electrolytes. The LCM activity coefficient equations are explicit functions, and require computational methods. Due to length and complexity, only the salient features of the LCM equations will be reviewed in this paper. The Aspen Plus Electrolyte Manual (1) and Taylor (21) present the final form of the LCM binary and multicomponent equations used in this work. [Pg.230]

The expression for the excess Gibbs energy is built up from the usual NRTL equation normalized by infinite dilution activity coefficients, the Pitzer-Debye-Hiickel expression and the Born equation. The first expression is used to represent the local interactions, whereas the second describes the contribution of the long-range ion-ion interactions. The Bom equation accounts for the Gibbs energy of the transfer of ionic species from the infinite dilution state in a mixed-solvent to a similar state in the aqueous phase [38, 39], In order to become applicable to reactive absorption, the Electrolyte NRTL model must be extended to multicomponent systems. The model parameters include pure component dielectric constants of non-aqueous solvents, Born radii of ionic species and NRTL interaction parameters (molecule-molecule, molecule-electrolyte and electrolyte-electrolyte pairs). [Pg.276]

In chemical systems of interest, we usually have more than two components. In this section we will briefly explore the extension of the activity coefficient models above to multicomponent systems. We begin with an extension of the two-suffix Margules equation to a ternary system. The excess Gibbs energy is written as follows ... [Pg.444]




SEARCH



Activation energies models

Activation energy excess

Activation model

Active model

Activity coefficient multicomponent excess Gibbs energy

Activity coefficients energy

Activity coefficients model

Activity model

Energy excessive

Excess Gibbs energy

Excess Gibbs energy models

Excess activity coefficients

Excess energy

Excess energy model

Excess modelling

Gibbs excessive

Gibbs model

Models coefficients

© 2024 chempedia.info