Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Activation energy excess

Examining transition state theory, one notes that the assumptions of Maxwell-Boltzmann statistics are not completely correct because some of the molecules reaching the activation energy will react, lose excess vibrational energy, and not be able to go back to reactants. Also, some molecules that have reacted may go back to reactants again. [Pg.166]

If the decomposition reaction follows the general rate law, the activation energy, heat of decomposition, rate constant and half-life for any given temperature can be obtained on a few milligrams using the ASTM method. Hazard indicators include heats of decomposition in excess of 0.3 kcal/g, short half-lives, low activation energies and low exotherm onset temperatures, especially if heat of decomposition is considerable. [Pg.246]

Energy activation An excess energy that must be added to an atomic or molecular system to allow a process, such as diffusion or chemical reaction, to proceed. [Pg.635]

For a detailed discussion of the calculation of activities (and excess Gibbs free energies) from freezing point measurements, see R. L. Snow. J. B. Ott. J. R. Goates. K. N. Marsh, S. O Shea, and R. N. Stokes. "(Solid + Liquid) and (Vapor + Liquid) Phase Equilibria and Excess Enthalpies for (Benzene + //-Tetradecane), (Benzene + //-Hexadecane). (Cyclohexane + //-Tetradecane), and (Cyclohexane +//-Hexadecane) at 293.15, 298.15, and... [Pg.323]

Ea = Arrhenius activation energy Es = excess stress energy AEr = potential barrier for bond rotation Eel = molecular elastic energy F = mean force potential f = average force on the chain fb = bond breaking force H0 = Hookean spring constant kB = Boltzmann constant... [Pg.75]

A gas composed of molecules of diameter 0.5 nm takes part in a chemical reaction at 300. K and 1.0 atm with another gas (present in large excess) consisting of molecules of about the same size and mass to form a gas-phase product at 300. K. The activation energy for the reaction is 25 kj-mol. Use collision theory to calculate the ratio of the reaction rate at 320. K relative to that at 300. K. [Pg.698]

Efficiency and selectivity are the two keywords that better outline the outstanding performances of enzymes. However, in some cases unsatisfactory stereoselectivity of enzymes can be found and, in these cases, the enantiomeric excesses of products are too low for synthetic purposes. In order to overcome this limitation, a number of techniques have been proposed to enhance the selectivity of a given biocatalyst. The net effect pursued by all these protocols is the increase of the difference in activation energy (AAG ) of the two competing diastereomeric enzyme-substrate transition state complexes (Figure 1.1). [Pg.3]

According to Le Chatelier s principle the equilibrium will be shifted to the right-hand side by high pressures and, since the reaction is exothermic, by low temperatures. Indeed early work by Haber showed that at 200 °C and 300 atmospheres pressure the equilibrium mix would contain 90% ammonia, whilst at the same pressure but at 700 °C the percentage of ammonia at equilibrium would be less than 5%. Unfortunately the activation energy is such that temperatures well in excess of 1000 °C are needed to overcome this energy barrier (Figure 4.1). The conclusion from this is that direct reaction is not a commercially viable option. [Pg.84]

The reaction was followed by observing the appearance of the yellow colour of Ce(IV) at 400 m, with Pb(IV) present in excess concentration. Pb(IV) was varied in the region 8.6 x 10 M to 4.4 x 10 M while Ce(III) was kept at 4 x 10 M. A practical difficulty encountered was the photochemical instability of Ce(IV) acetate. Under the above conditions and in the temperature range 30-47 °C, the reaction is strictly first-order in each reactant. The observed rate coefficient at 30.0 °C is 1.48x10" l.mole sec and the apparent activation energy and... [Pg.242]

The apparent first-order rate coefficient obtained using excess oxidant increased exponentially with increase in acidity in the range 5 N < [H30" ] < 12 N. The reaction is first-order with respect to added manganous ions (k increasing sharply), but the activation energy (11.0 kcal.mole ) remains unchanged. At appreciable catalyst concentrations the reaction becomes almost zero-order with respect to bromide ion. The mechanism appears to be a slow oxidation of Mn(II) to Mn(III) followed by a rapid reduction of the latter by bromide. This reaction is considered further in the section on Mn(II)-catalysis of chromic acid oxidations (p. 327). [Pg.282]

A slow oxidation of acetic acid by Mn(III) acetate occurs at 100 °C to give mainly acetoxyacetic acid and CO2 with an activation energy of 28 kcal.mole F In the presence of excess Mn(Il) a first-order disappearance of oxidant is found . The low yield of methane is incompatible with an initial homolysis of the type... [Pg.386]

Racemic and enantioselective hydrogenations of tiglic acid each exhibited an apparent activation energy of 17 kJ mol (268 to 308 K). Enantiomeric excess was constant at 20 to 23% over the range 273 to 308 K but lower, 13%, at 268 K. Enantioselective hydrogenation of trifluorotiglic acid exhibited an activation energy of 23 kJ mol" (253 to 323 K) and a temperature-independent enantiomeric excess of 13 2%. [Pg.223]

In order to obtain a definite breakthrough of current across an electrode, a potential in excess of its equilibrium potential must be applied any such excess potential is called an overpotential. If it concerns an ideal polarizable electrode, i.e., an electrode whose surface acts as an ideal catalyst in the electrolytic process, then the overpotential can be considered merely as a diffusion overpotential (nD) and yields (cf., Section 3.1) a real diffusion current. Often, however, the electrode surface is not ideal, which means that the purely chemical reaction concerned has a free enthalpy barrier especially at low current density, where the ion diffusion control of the electrolytic conversion becomes less pronounced, the thermal activation energy (AG°) plays an appreciable role, so that, once the activated complex is reached at the maximum of the enthalpy barrier, only a fraction a (the transfer coefficient) of the electrical energy difference nF(E ml - E ) = nFtjt is used for conversion. [Pg.126]

Examples of their results [154] are shown in the set of curves in Fig. 13. At a given humidity, the Co concentration increases with T the thermal activation energy is about 0.4 eV. At a given temperature, the corrosion increases with an increase in humidity. As the humidity changes from 30 to 90%, the corrosion rate increases about an order of magnitude. The data allow a calculation of the acceleration factors for a variety of conditions. For example, the acceleration factor for 90°C/90% RH with respect to 30°C/40% RH is calculated to be 150. If the product passes a 2-week exposure to 90 °C/90% RH, the test indicates that it will survive in excess of 6 years at 30 °C/40% RH. The values of the acceleration factors, however, may vary from film to film. [Pg.279]


See other pages where Activation energy excess is mentioned: [Pg.2398]    [Pg.2888]    [Pg.108]    [Pg.37]    [Pg.529]    [Pg.253]    [Pg.170]    [Pg.228]    [Pg.108]    [Pg.53]    [Pg.443]    [Pg.188]    [Pg.984]    [Pg.1039]    [Pg.91]    [Pg.101]    [Pg.123]    [Pg.129]    [Pg.449]    [Pg.59]    [Pg.58]    [Pg.783]    [Pg.228]    [Pg.246]    [Pg.272]    [Pg.214]    [Pg.241]    [Pg.465]    [Pg.99]    [Pg.275]    [Pg.226]    [Pg.588]    [Pg.259]    [Pg.94]   
See also in sourсe #XX -- [ Pg.220 ]




SEARCH



Activity coefficient from excess Gibbs energy

Activity coefficient multicomponent excess Gibbs energy

Activity coefficient-models multicomponent excess Gibbs energy

Energy excessive

Excess Gibbs Energy and Activity Coefficient Equations

Excess Gibbs energy and the activity coefficient

Excess Gibbs energy equivalent activity coefficients

Excess activation free energy

Excess energy

Several Activity Coefficient (Excess Free-Energy) Models

© 2024 chempedia.info