Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Active-site irreversible inhibitors

It binds to the enzyme and destroy the active site, or otherwise screw the protein. Suicide inhibitors, a special class of such inhibitors, are activated by the normal catalytic activity of the enzyme, but form an intermediate that binds to and destroys the active site. Irreversible inhibitors bind tightly (often covalently) to the enzyme and cannot be removed by dialysis. They include such things as nerve gases (Sarin, DIPF, Tabun) and insecticides (Malathion). [Pg.193]

Active-site Irreversible Inhibitors Designed and Synthesized... [Pg.405]

Diisopropylphosphorofluoridate (DFP, Section 4.4) is also an active-site irreversible inhibitor that blocks the active serine residue of serine proteases. It is easy to show that the inhibition is irreversible since exhautive dialysis still produces an inactive enzyme. [Pg.438]

Information relevant to the mechanism of an enzyme-catalyzed reaction can, in general, only be obtained from irreversible inhibitors which react specifically at the active site and thereby inactivate the enzyme. As active-site-directed inhibition is treated in detail in Ref. 142 general aspects will be discussed here only briefly. In order to be suitable as an active-site-directed inhibitor, a compound must fulfil the following requirements. [Pg.362]

The active-site-directed inhibitor tosylphenylalanine chloromethyl ketone that specifically and irreversibly inhibits chymotrypsin. This chloroketone inhibitor relies on its toluene sulfonyl (or tosyl) group for binding into the aromatic binding pocket of chymotrypsin s active site. Inactivation occurs by alkylation of histidine-57 (pseudo-first order rate constant 0.2 min ). See Chymo-trypsin... [Pg.681]

Reversible inhibition of an enzyme is competitive, uncompetitive, or mixed. Competitive inhibitors compete with substrate by binding reversibly to the active site, but they are not transformed by the enzyme. Uncompetitive inhibitors bind only to the ES complex, at a site distinct from the active site. Mixed inhibitors bind to either E or ES, again at a site distinct from the active site. In irreversible inhibition an inhibitor binds permanently to an active site by forming a covalent bond or a veiy stable noncovalent interaction. [Pg.213]

Irreversible inhibitors may be classified for convenience as active site directed inhibitors and suicide or irreversible mechanism based inhibitors (IMBIs). They bind to the enzyme by either strong non-covalent or strong covalent bonds. Inhibitors bound by strong non-covalent bonds will slowly dissociate, releasing the enzyme to carry out its normal function. However, whatever the type of binding, the enzyme will resume its normal function once the organism has synthesized a sufficient number of additional enzyme molecules to overcome the effect of the inhibitor. [Pg.140]

Active site directed inhibitors are compounds that bind at or near to the active site of the enzyme. These inhibitors usually form strong covalent bonds with either the functional groups that are found at the active site or close to that site. Since these groups are usually nucleophiles, the incorporation of electrophilic groups in the structure of a substrate can be used to develop new inhibitors (Table 7.3). This approach may also be used to enhance the action of a known inhibitor. Most of the active site directed irreversible inhibitors in clinical use were not developed from a substrate. They were obtained or developed by other routes and only later was their mode of action discovered. For example, aspirin,... [Pg.140]

Anatoxin-a(s) inhibits acetylcholinesterase by acting as an irreversible active-site-directed inhibitor [61]. This prevents degradation of ACh and leads to over-stimulation of the muscle cells (Figure 6.1) [56,62]. Thus, although the mechanism of action of anatoxin-a(s) is quite different from that of anatoxin-a, the observed toxicity is similar. In addition, it was the first irreversible acetylcholinesterase inhibitor to be found in a cyanobacterium. [Pg.146]

Apart from lAPs, there are several nonmammalian regulators of caspases, which are active-site specific inhibitors (Callus and Vaux, 2007). One example is a serpin from the cowpox virus, cytokine response modifier A (crmA). CrmA forms a covalent complex with the initiator caspase-1 and -8 resulting in irreversible inhibition of these caspases. It also inhibits caspase-6 but less efficiently (Dobo et al., 2006). The baculoviral protein p35 is a broad spectrum caspase inhibitor that irreversibly inactivates caspases (Bump et al., 1995 Fisher et al., 1999). [Pg.31]

Hyde, E.G., and Carmicheal, W.W. 1991. Anatoxin-a(s), a naturally occorring organophosphate, is an irreversible active site directed inhibitor of acetylcholinesterase (EC 3.1.1.T). JBiochem Toxicol 6, 195-201. [Pg.155]

Irreversible inhibitors are effectively esteratic site inhibitors which, like true substrates, react with the hydroxyl group of serine at the catalytic active site. Such inhibitors, sometimes referred to as acid-transferring inhibitors, include the organophosphates, the organo-sulfonates, and the carbamates. All form acyl-enzyme complexes which, unlike substrate-enzyme intermediates, are relatively stable to hydrolysis. Indeed, the phosphorylated enzyme intermediates have half-lives from a few hours to several days (A12), whereas the sulfonated or carbamylated enzyme complexes have much shorter half-lives—several minutes to a few hours. Several strong lines of direct evidence point to the formation of an acyl complex—the isolation of phosphorylated serine from hydrolysates of horse cholinesterase (J2), complex formation and carbamylation (02), and the sulfonation of butyrylcholinesterase by methanesulfonyl fluoride in the presence of tubocurarine and eserine (P6). [Pg.65]

FAAH has been crystallized in complex with an irreversible active site-directed inhibitor, the methoxy arachidonyl fluoro-phosphonate (MAFP), and its three-dimensional structure has been analyzed at a 2.8 A resolution (Bracey et al.,... [Pg.110]

Suicide inhibitors, or mechanism-based inhibitors are modified substrates that provide the most specific means to modify an enzyme active site. The inhibitor binds to the enzyme as a substrate and is initially processed by the normal catalytic mechanism. The mechanism of catalysis then generates a chemically reactive intermediate that inactivates the enzyme through covalent modification. The fact that the enzyme participates in its own irreversible inhibition strongly suggests that the covalently modified group on the enzyme is catalytically vital. One example of such an inhibitor is N,N-dimethylpropargylamine. A flavin prosthetic group of monoamine oxidase... [Pg.211]

During irreversible inhibition, after initial binding of the inhibitor to the enzyme, covalent bonds are formed between a functional group on the enzyme and the inhibitor. This is the case, for example, for the active-site-directed inhibitors (affinity labelling). [Pg.62]

Kiorpes, T.G., Hoerr, D., Ho, W. Weaner, L.F., Inman, M.G. Tutwiler, G.F. (1984) Identification of 2-tetradeoylglycidyl coenzyme A as the active form of methyl 2-tetradecyglycidate (methyl paloxirate) and its characterization as an irreversible, active site-directed inhibitor of carnitine palmitoyltransferase... [Pg.42]

In irreversible inhibition, a molecule causes an enzyme to lose all enzymatic activity. Most irreversible inhibitors are toxic substances that destroy enzymes. Usually an irreversible inhibitor forms a covalent bond with an amino acid side group within the active site, which prevents the substrate from binding to the active site or prevents catalytic activity. [Pg.579]

Elucidating Mechanisms for the Inhibition of Enzyme Catalysis An inhibitor interacts with an enzyme in a manner that decreases the enzyme s catalytic efficiency. Examples of inhibitors include some drugs and poisons. Irreversible inhibitors covalently bind to the enzyme s active site, producing a permanent loss in catalytic efficiency even when the inhibitor s concentration is decreased. Reversible inhibitors form noncovalent complexes with the enzyme, thereby causing a temporary de-... [Pg.638]

Active site directed P-lactam-derived inhibitors have a competitive component of inhibition, but once in the active site they form an acyl en2yme species which follows one or more of the pathways outlined in Figure 1. Compounds that foUow Route C and form a transiendy inhibited en2yme species and are subsequendy hydroly2ed to products have been termed inhibitory substrates or competitive substrates. Inhibitors that give irreversibly inactivated P-lactamase (Route A) are called suicide inactivators or irreversible inhibitors. The term progressive inhibitor has also been used. An excellent review has appeared on inhibitor interactions with P-lactamases (28). [Pg.46]

This class of inhibitors usually acts irreversibly by permanently blocking the active site of an enzyme upon covalent bond formation with an amino acid residue. Very tight-binding, noncovalent inhibitors often also act in an irreversible fashion with half-Hves of the enzyme-inhibitor complex on the order of days or weeks. At these limits, distinction between covalent and noncovalent becomes functionally irrelevant. The mode of inactivation of this class of inhibitors can be divided into two phases the inhibitors first bind to the enzyme in a noncovalent fashion, and then undergo subsequent covalent bond formation. [Pg.322]

Affinity Labels. Active site-directed, irreversible inhibitors or affinity labels are usually substrate analogues that contain a reactive electrophilic functional group. In the first step, they bind to the active site of the target enzyme in a reversible fashion. Subsequentiy, an active site nucleophile in close proximity reacts with the electrophilic group on the substrate to form a covalent bond between the enzyme and the inhibitor, typically via S 2 alkylation or acylation. Affinity labels do not require activation by the catalysis of the enzyme, as in the case of a mechanism-based inhibitor. [Pg.323]

The often fast binding step of the inhibitor I to the enzyme E, forming the enzyme inhibitor complex E-I, is followed by a rate-determining inactivation step to form a covalent bond. The evaluation of affinity labels is based on the fulfillment of the following criteria (/) irreversible, active site-directed inactivation of the enzyme upon the formation of a stable covalent linkage with the activated form of the inhibitor, (2) time- and concentration-dependent inactivation showing saturation kinetics, and (3) a binding stoichiometry of 1 1 of inhibitor to the enzyme s active site (34). [Pg.324]


See other pages where Active-site irreversible inhibitors is mentioned: [Pg.125]    [Pg.226]    [Pg.125]    [Pg.226]    [Pg.349]    [Pg.192]    [Pg.192]    [Pg.331]    [Pg.320]    [Pg.2325]    [Pg.2346]    [Pg.88]    [Pg.230]    [Pg.55]    [Pg.222]    [Pg.324]    [Pg.821]    [Pg.88]    [Pg.40]    [Pg.57]    [Pg.152]    [Pg.320]    [Pg.324]   
See also in sourсe #XX -- [ Pg.125 ]




SEARCH



Active site inhibitors

Active-site directed irreversible inhibitors

Active-site-directed Irreversible Inhibitors and Substrates

Enzyme inhibitors active-site-directed irreversible

Irreversible inhibitors

© 2024 chempedia.info