Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Actin properties

The actinic properties of the light from burning phosphorus were found by J. M. Eder14 to be much less than those of burning magnesium or aluminium. The actinic properties of the flame obtained when a soln. of phosphorus in carbon disulphide is burnt, were mentioned by J. Murray. L. Rolla and G. Piccardi studied the ionization of phosphorus in flames. [Pg.766]

Zigmond, 1988). The ATP-hydrolysis that accompanies actin polymerization, ATP —> ADP + Pj, and the subsequent release of the cleaved phosphate (Pj) are believed to act as a clock (Pollard et ah, 1992 Allen et ah, 1996), altering in a time-dependent manner the mechanical properties of the filament and its propensity to depolymerize. Molecular dynamics simulations suggested a so-called back door mechanism for the hydrolysis reaction ATP ADP - - Pj in which ATP enters the actin from one side, ADP leaves from the same side, but Pj leaves from the opposite side, the back door (Wriggers and Schulten, 1997b). This hypothesis can explain the effect of the toxin phalloidin which blocks the exit of the putative back door pathway and, thereby, delays Pi release as observed experimentally (Dancker and Hess, 1990). [Pg.47]

Pollard et al., 1992] Pollard, T. D., Goldberg, I., and Schwarz, W. H. Nucleotide exchange, structure, and mechanical properties of filaments assembled from ATP-actin and ADP-actin. J. Biol. Chem. 267 (1992) 20339-20345... [Pg.64]

Certain proteins endow cells with unique capabilities for movement. Cell division, muscle contraction, and cell motility represent some of the ways in which cells execute motion. The contractile and motile proteins underlying these motions share a common property they are filamentous or polymerize to form filaments. Examples include actin and myosin, the filamentous proteins forming the contractile systems of cells, and tubulin, the major component of microtubules (the filaments involved in the mitotic spindle of cell division as well as in flagella and cilia). Another class of proteins involved in movement includes dynein and kinesin, so-called motor proteins that drive the movement of vesicles, granules, and organelles along microtubules serving as established cytoskeletal tracks. ... [Pg.124]

Possible modes of regulation of filament assembly may be anticipated from the basic properties of actin. We have shown that the tightly bound divalent metal ion (Ca or Mg ) interacts with the P- and y-phosphates of ATP bound to actin, and that the Me-ATP bidentate chelate is bound to G-actin in the A configuration. The nature of the bound metal ion affects the conformation of actin, the binding kinetics of ATP and ADP, and the rate of ATP hydrolysis. [Pg.44]

A three-dimensional meshwork of proteinaceous filaments of various sizes fills the space between the organelles of all eukaryotic cell types. This material is known collectively as the cytoskeleton, but despite the static property implied by this name, the cytoskeleton is plastic and dynamic. Not only must the cytoplasm move and modify its shape when a cell changes its position or shape, but the cytoskeleton itself causes these movements. In addition to motility, the cytoskeleton plays a role in metabolism. Several glycolytic enzymes are known to be associated with actin filaments, possibly to concentrate substrate and enzymes locally. Many mRNA species appear to be bound by filaments, especially in egg cells where they may be immobilized in distinct regions thereby becoming concentrated in defined tissues upon subsequent cell divisions. [Pg.85]

Inside the typical smooth muscle cell, the cytoplasmic filaments course around the nuclei filling most of the cytoplasm between the nuclei and the plasma membrane. There are two filamentous systems in the smooth muscle cell which run lengthwise through the cell. The first is the more intensively studied actin-myosin sliding filament system. This is the system to which a consensus of investigators attribute most of the active mechanical properties of smooth muscle. It will be discussed in detail below. The second system is the intermediate filament system which to an unknown degree runs in parallel to the actin-myosin system and whose functional role has not yet been completely agreed upon. The intermediate filaments are so named because their diameters are intermediate between those of myosin and actin. These very stable filaments are functionally associated with various protein cytoarchitectural structures, microtubular systems, and desmosomes. Various proteins may participate in the formation of intermediate filaments, e.g., vimentin. [Pg.159]

The analytic validity of an abstract parallel elastic component rests on an assumption. On the basis of its presumed separate physical basis, it is ordinarily taken that the resistance to stretch present at rest is still there during activation. In short, it is in parallel with the filaments which generate active force. This assumption is especially attractive since the actin-myosin system has no demonstrable resistance to stretch in skeletal muscle. However, one should keep in mind, for example, that in smooth muscle cells there is an intracellular filament system which runs in parallel with the actin-myosin system, the intermediate filament system composed of an entirely different set of proteins, (vimentin, desmin, etc.), whose mechanical properties are essentially unknown. Moreover, as already mentioned, different smooth muscles have different extracellular volumes and different kinds of filaments between the cells. [Pg.165]

The fifth was a molecular biologist, who smiled sweetly and pointed out that all the others had missed the point. The frog jumps because of the biochemical properties of its muscles. The muscles are largely composed of two interdigitated filamentous proteins, actin and myosin, and they contract because the protein filaments slide past each other. This property of the actin and myosin is dependent on the amino acid composition of the two proteins, and hence on chemical, and thus on physical properties. In the last analysis, the molecular biologist insisted, following James Watson, we are all nothing but subatomic particles. [Pg.280]

DTBP also has been used to investigate the dimerization and actin bundling properties of vil-lin (George et al., 2007), the interaction of the Mrell complex with RPA (Olson et al., 2007), the study of gamma-secretase complex assembly (Spasic et al., 2007), and the multi-protein assembly of Kv4.2, KChIP3 and DPP10 (Jerng et al., 2005). [Pg.256]

George, S.P., Wang, Y., Mathew, S., Kamalakkannan, S., and Seema, K. (2007) Dimerization and actin-bundling properties of villin and its role in the assembly of epithelial cell brush borders. J. Biol. Chem. 10.1074/jbc.M703617200. [Pg.1065]

A basic structural property of protein filaments is polarity, that is, directionality. Almost all naturally occurring filaments are polar (e.g., F-actin, microtubules, TMV, and so on). The few exceptions are either bipolar, like myosin (Huxley, 1963 Squire, 1981), or nonpolar, like intermediate filaments (Herrmann and Aebi, 2004). One method of determining... [Pg.151]

Table 4.1. Properties of some actin-binding proteins... Table 4.1. Properties of some actin-binding proteins...
C terminus (ILWEQ), WASp homology 2 (WH2), profilin (PROF), and cyclase-associated protein, domains are all present in fungi, plants, and metazoa. Many of these domains bind similar sites on actin, although they possess different properties with respect to actin polymerization (reviewed in Van Troys et al., 1999). [Pg.229]

There are several incidents in the text where glass has been involved as a direct cause, either because of its chemical properties (alkalinity, corrosive attack), or its physical properties (actinic transparency, or mechanical limitations under stress). Some of these incidents may be found under the entries ... [Pg.170]


See other pages where Actin properties is mentioned: [Pg.269]    [Pg.486]    [Pg.147]    [Pg.809]    [Pg.25]    [Pg.44]    [Pg.44]    [Pg.47]    [Pg.60]    [Pg.60]    [Pg.79]    [Pg.209]    [Pg.230]    [Pg.873]    [Pg.143]    [Pg.35]    [Pg.275]    [Pg.180]    [Pg.355]    [Pg.509]    [Pg.102]    [Pg.349]    [Pg.576]    [Pg.89]    [Pg.376]    [Pg.165]    [Pg.92]    [Pg.129]    [Pg.146]    [Pg.367]    [Pg.71]    [Pg.194]    [Pg.194]    [Pg.28]   
See also in sourсe #XX -- [ Pg.19 , Pg.299 ]

See also in sourсe #XX -- [ Pg.263 ]




SEARCH



Actinic

© 2024 chempedia.info