Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acids surface acidity

Surface Acidity. Surface acidity was examined with a Nicolet 170 SX... [Pg.355]

The measurement of the acidity of solid acid surfaces has been the focus of a vast number of studies. The most commonly used techniques are Hammett titrations, chemisorption of bases and TPD. Extensive discussions of diese methods and their shortcomings are available in the literature [4], The use of adsorption calorimetry makes it possible to determine quantitatively the surface acidity and the acid-strength distribution of solid acids. Surface acid-base properties of catalytic solids can also be studied by base desorption using TG [71]. [Pg.401]

Catalytic gas-phase reactions play an important role in many bulk chemical processes, such as in the production of methanol, ammonia, sulfuric acid, and nitric acid. In most processes, the effective area of the catalyst is critically important. Since these reactions take place at surfaces through processes of adsorption and desorption, any alteration of surface area naturally causes a change in the rate of reaction. Industrial catalysts are usually supported on porous materials, since this results in a much larger active area per unit of reactor volume. [Pg.47]

White crystals, m.p. 90-9 rC. Prepared fromp-nitrotoluene by way of p-aminobenzoic acid. It is used as a local anaesthetic on mucous surfaces internally and by injection, and is taken internally to relieve gastric pain. [Pg.56]

Sorbitol is manufactured by the reduction of glucose in aqueous solution using hydrogen with a nickel catalyst. It is used in the manufacture of ascorbic acid (vitamin C), various surface active agents, foodstuffs, pharmaceuticals, cosmetics, dentifrices, adhesives, polyurethane foams, etc. [Pg.368]

Aluminum complex greases, obtained by the reaction of aluminum isopropylate with a mixture of benzoic acid and fatty acids. These greases have a remarkable resistance to water, very good adhesion to metallic surfaces, good mechanical stability properties and resistance to temperature. They are less common than the first two types. [Pg.281]

The corrosion rate of steel in carbonic acid is faster than in hydrochloric acid Correlations are available to predict the rate of steel corrosion for different partial pressures of CO2 and different temperatures. At high temperatures the iron carbonate forms a film of protective scale on the steel s surface, but this is easily washed away at lower temperatures (again a corrosion nomogram is available to predict the impact of the scale on the corrosion rate at various CO2 partial pressures and temperatures). [Pg.94]

It was determined, for example, that the surface tension of water relaxes to its equilibrium value with a relaxation time of 0.6 msec [104]. The oscillating jet method has been useful in studying the surface tension of surfactant solutions. Figure 11-21 illustrates the usual observation that at small times the jet appears to have the surface tension of pure water. The slowness in attaining the equilibrium value may partly be due to the times required for surfactant to diffuse to the surface and partly due to chemical rate processes at the interface. See Ref. 105 for similar studies with heptanoic acid and Ref. 106 for some anomalous effects. [Pg.34]

Results can sometimes be unexpected. The first study of this type made use of labeled Aerosol OTN [111], an anionic surfactant, also known as di-n-octylsodium sulfosuccinate. The measured F was twice that in Eq. III-93 and it was realized that hydrolysis had occurred, that is, X + H2O = HX + OH , and that it was the undissociated acid HX that was surface-active. Since pH was essentially constant, the activity of HX was just proportional to C. A similar behavior was found for aqueous sodium stearate [112]. [Pg.78]

About this time Miss Pockelsf [3] showed how films could be confined by means of barriers thus she found little change in the surface tension of fatty-acid films until they were confined to an area corresponding to about 20 per molecule (the Pockels point). In 1899, Rayleigh [5] commented that a reasonable interpretation of the Pockels point was that at this area the molecules of the surface material were just touching each other. The picture of a surface film... [Pg.101]

This observation that the length of the hydrocarbon chain could be varied from 16 to 26 carbon atoms without affecting the limiting area could only mean that at this point the molecules were oriented vertically. From the molecular weight and density of palmitic acid, one computes a molecular volume of 495 A a molecule occupying only 21 A on the surface could then be about 4.5 A on the side but must be about 23 A long. In this way one begins to obtain information about the shape and orientation as well as the size of molecules. [Pg.102]

Still another manifestation of mixed-film formation is the absorption of organic vapors by films. Stearic acid monolayers strongly absorb hexane up to a limiting ratio of 1 1 [272], and data reminiscent of adsorption isotherms for gases on solids are obtained, with the surface density of the monolayer constituting an added variable. [Pg.145]

The most common situation studied is that of a film reacting with some species in solution in the substrate, such as in the case of the hydrolysis of ester monolayers and of the oxidation of an unsaturated long-chain acid by aqueous permanganate. As a result of the reaction, the film species may be altered to the extent that its area per molecule is different or may be fragmented so that the products are soluble. One may thus follow the change in area at constant film pressure or the change in film pressure at constant area (much as with homogeneous gas reactions) in either case concomitant measurements may be made of the surface potential. [Pg.151]

These effects can be illustrated more quantitatively. The drop in the magnitude of the potential of mica with increasing salt is illustrated in Fig. V-7 here yp is reduced in the immobile layer by ion adsorption and specific ion effects are evident. In Fig. V-8, the pH is potential determining and alters the electrophoretic mobility. Carbon blacks are industrially important materials having various acid-base surface impurities depending on their source and heat treatment. [Pg.190]

The location and shape of the entire electrocapillary curve are affected if the general nature of the medium is changed. Fawcett and co-workers (see Ref. 126) have used nonaqueous media such as methanol, V-methylformamide, and propylene carbonate. In earlier studies, electrocapillaiy curves were obtained for O.OIA/ hydrochloric acid in mixed water-ethanol media of various compositions [117, 118]. The surface adsorption of methanol, obtained from... [Pg.200]

Rehbinder and co-workers were pioneers in the study of environmental effects on the strength of solids [144], As discussed by Frumkin and others [143-145], the measured hardness of a metal immersed in an electrolyte solution varies with applied potential in the manner of an electrocapillary curve (see Section V-7). A dramatic demonstration of this so-called Rehbinder effect is the easy deformation of single crystals of tin and of zinc if the surface is coated with an oleic acid monolayer [144]. [Pg.281]

Perhaps the simplest case of reaction of a solid surface is that where the reaction product is continuously removed, as in the dissolving of a soluble salt in water or that of a metal or metal oxide in an acidic solution. This situation is discussed in Section XVII-2 in connection with surface area determination. [Pg.282]

As mentioned in Section IX-2A, binary systems are more complicated since the composition of the nuclei differ from that of the bulk. In the case of sulfuric acid and water vapor mixtures only some 10 ° molecules of sulfuric acid are needed for water oplet nucleation that may occur at less than 100% relative humidity [38]. A rather different effect is that of passivation of water nuclei by long-chain alcohols [66] (which would inhibit condensation note Section IV-6). A recent theoretical treatment by Bar-Ziv and Safran [67] of the effect of surface active monolayers, such as alcohols, on surface nucleation of ice shows the link between the inhibition of subcooling (enhanced nucleation) and the strength of the interaction between the monolayer and water. [Pg.338]

The acid monolayers adsorb via physical forces [30] however, the interactions between the head group and the surface are very strong [29]. While chemisorption controls the SAMs created from alkylthiols or silanes, it is often preceded by a physical adsorption step [42]. This has been shown quantitatively by FTIR for siloxane polymers chemisorbing to alumina illustrated in Fig. XI-2. The fact that irreversible chemisorption is preceded by physical adsorption explains the utility of equilibrium adsorption models for these processes. [Pg.395]


See other pages where Acids surface acidity is mentioned: [Pg.59]    [Pg.86]    [Pg.106]    [Pg.112]    [Pg.116]    [Pg.129]    [Pg.206]    [Pg.219]    [Pg.257]    [Pg.297]    [Pg.314]    [Pg.381]    [Pg.381]    [Pg.381]    [Pg.412]    [Pg.426]    [Pg.76]    [Pg.79]    [Pg.101]    [Pg.132]    [Pg.135]    [Pg.136]    [Pg.144]    [Pg.178]    [Pg.191]    [Pg.242]    [Pg.245]    [Pg.395]    [Pg.397]    [Pg.406]    [Pg.444]    [Pg.445]    [Pg.446]    [Pg.448]   
See also in sourсe #XX -- [ Pg.79 ]




SEARCH



Acid surface

© 2024 chempedia.info