Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lone pairs acids

A First we draw the Lewis structures of the four acids. Lone pairs are not depicted since we are interested only in the arrangements of atoms. [Pg.375]

Solutions of H3BO3 are acidic because the concentration of OH" has been reduced, not because the concentration of H+ has been increased by dissociation from H3BO3. Thus, H3BO3 acts not as a Br nsted-Lowry acid (proton donor), but as a Lewis acid (lone pair acceptor, from OH"), as illustrated by the following equation. [Pg.454]

We have seen that a base can be defined as combining with a proton and, therefore, requires at least one lone pair of electrons. A more general definition of acids and bases, due to G. N. Lewis, describes a base as any species (atom, ion or molecule) which can donate an electron pair, and an acid as any species which can accept an electron pair— more simply, a base is an electron-pair donor, an acid an electron-pair acceptor. Some examples of Lewis acids and bases are ... [Pg.91]

Boron trioxide is not particularly soluble in water but it slowly dissolves to form both dioxo(HB02)(meta) and trioxo(H3B03) (ortho) boric acids. It is a dimorphous oxide and exists as either a glassy or a crystalline solid. Boron trioxide is an acidic oxide and combines with metal oxides and hydroxides to form borates, some of which have characteristic colours—a fact utilised in analysis as the "borax bead test , cf alumina p. 150. Boric acid. H3BO3. properly called trioxoboric acid, may be prepared by adding excess hydrochloric or sulphuric acid to a hot saturated solution of borax, sodium heptaoxotetraborate, Na2B407, when the only moderately soluble boric acid separates as white flaky crystals on cooling. Boric acid is a very weak monobasic acid it is, in fact, a Lewis acid since its acidity is due to an initial acceptance of a lone pair of electrons from water rather than direct proton donation as in the case of Lowry-Bronsted acids, i.e. [Pg.148]

Lone pair donation from the hydroxyl oxygen makes the carbonyl group less elec trophilic than that of an aldehyde or ketone The graphic that opened this chapter is an electrostatic potential map of formic acid that shows the most electron rich site to be the oxygen of the carbonyl group and the most electron poor one to be as expected the OH hydrogen... [Pg.794]

Chiral Center. The chiral center, which is the chiral element most commonly met, is exemplified by an asymmetric carbon with a tetrahedral arrangement of ligands about the carbon. The ligands comprise four different atoms or groups. One ligand may be a lone pair of electrons another, a phantom atom of atomic number zero. This situation is encountered in sulfoxides or with a nitrogen atom. Lactic acid is an example of a molecule with an asymmetric (chiral) carbon. (See Fig. 1.13b.)... [Pg.46]

Chemical off—on switching of the chemiluminescence of a 1,2-dioxetane (9-benzyhdene-10-methylacridan-l,2-dioxetane [66762-83-2] (9)) was first described in 1980 (33). No chemiluminescence was observed when excess acetic acid was added to (9) but chemiluminescence was recovered when triethylamine was added. The off—on switching was attributed to reversible protonation of the nitrogen lone pair and modulation of chemically induced electron-exchange luminescence (CIEEL). Base-induced decomposition of a 1,2-dioxetane of 2-phen5l-3-(4 -hydroxyphenyl)-l,4-dioxetane (10) by deprotonation of the phenoHc hydroxy group has also been described (34). [Pg.264]

The results obtained for 1-phenylpyrazole (32) and its conjugate acid (34) are consistent with those of Minkin. The bond order between thd two rings decreases by protonation (from 0.341 to 0.241) and this is in agreement with the expected effect of the N-2 positive charge on the delocalization of the lone pair on N-1 over the phenyl ring. [Pg.174]

Neutral compounds such as boron trifluoride and aluminum chloride form Lewis acid-base complexes by accepting an electron pair from the donor molecule. The same functional groups that act as lone-pair donors to metal cations can form complexes with boron trifluoride, aluminum chloride, and related compounds. [Pg.234]

Diffuse functions are large-size versions of s- and p-type functions (as opposed to the standard valence-size functions). They allow orbitals to occupy a larger region of spgce. Basis sets with diffuse functions are important for systems where electrons are relatively far from the nucleus molecules with lone pairs, anions and other systems with significant negative charge, systems in their excited states, systems with low ionization potentials, descriptions of absolute acidities, and so on. [Pg.99]

A coordination compound, or complex, is formed when a Lewis base (ligand) is attached to a Lewis acid (acceptor) by means of a lone-pair of electrons. Where the ligand is composed of a number of atoms, the one which is directly attached to the acceptor is called the donor atom . This type of bonding has already been discussed (p. 198) and is exemplified by the addition compounds formed by the trihalides of the elements of Group 13 (p. 237) it is also the basis of much of the chemistry of the... [Pg.905]

The basic concept of activation in hetero-Diels-Alder reactions is to utilize the lone-pair electrons of the carbonyl and imine functionality for coordination to the Lewis acid. The coordination of the dienophile to the Lewis acid changes the FMOs of the dienophile and for the normal electron-demand reactions a decrease of the LUMO and HOMO energies is observed leading to a better interaction with... [Pg.314]

In cases in which the ionic liquid is not directly involved in creating the active catalytic species, a co-catalytic interaction between the ionic liquid solvent and the dissolved transition metal complex still often takes place and can result in significant catalyst activation. When a catalyst complex is, for example, dissolved in a slightly acidic ionic liquid, some electron-rich parts of the complex (e.g., lone pairs of electrons in the ligand) will interact with the solvent in a way that will usually result in a lower electron density at the catalytic center (for more details see Section 5.2.3). [Pg.222]

An exception to the lone pair or donor electron requirement of organic inhibitors is provided by the quaternary ammonium compounds. Meakins reports the effectiveness of tetra-alkyl ammonium bromides with the alkyl group having C 10. Comparative laboratory tests of commercial inhibitors of this type have been described . The inhibiting action of tetra-butyl ammonium sulphate for iron in H S-saturated sulphuric acid has been described, better results being achieved than with mono-, di- or tri-butylamines . [Pg.793]


See other pages where Lone pairs acids is mentioned: [Pg.237]    [Pg.425]    [Pg.53]    [Pg.114]    [Pg.207]    [Pg.214]    [Pg.95]    [Pg.12]    [Pg.78]    [Pg.669]    [Pg.230]    [Pg.251]    [Pg.252]    [Pg.163]    [Pg.47]    [Pg.205]    [Pg.411]    [Pg.669]    [Pg.145]    [Pg.53]    [Pg.377]    [Pg.424]    [Pg.687]    [Pg.818]    [Pg.900]    [Pg.303]    [Pg.308]    [Pg.154]    [Pg.184]    [Pg.311]    [Pg.122]    [Pg.192]    [Pg.11]    [Pg.19]    [Pg.118]    [Pg.153]   
See also in sourсe #XX -- [ Pg.214 ]




SEARCH



Lone pairs

© 2024 chempedia.info