Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymeric acids, free

Solution Polymerization. In solution polymerization, a solvent for the monomer is often used to obtain very uniform copolymers. Polymerization rates ate normally slower than those for suspension or emulsion PVC. Eor example, vinyl chloride, vinyl acetate, and sometimes maleic acid are polymerized in a solvent where the resulting polymer is insoluble in the solvent. This makes a uniform copolymer, free of suspending agents, that is used in solution coatings (99). [Pg.502]

In one of the early experiments designed to elucidate the genetic code, Marshall Nirenberg of the U.S. National Institutes of Health (Nobel Prize in physiology or medicine, 1968) prepared a synthetic mRNA in which all the bases were uracil. He added this poly(U) to a cell-free system containing all the necessary materials for protein biosynthesis. A polymer of a single amino acid was obtained. What amino acid was polymerized ... [Pg.1191]

Reviews dealing with a specific reaction or property from the heterocyclic point of view have been rarer—tautomerism (continued from Volume 1), free radical substitution, metal catalysts and pyri-dines, acid-catalyzed polymerization of pyrroles, and diazomethane reactions have been covered in this volume. [Pg.465]

Polylactides, 18 Poly lactones, 18, 43 Poly(L-lactic acid) (PLLA), 22, 41, 42 preparation of, 99-100 Polymer age, 1 Polymer architecture, 6-9 Polymer chains, nonmesogenic units in, 52 Polymer Chemistry (Stevens), 5 Polymeric chiral catalysts, 473-474 Polymeric materials, history of, 1-2 Polymeric MDI (PMDI), 201, 210, 238 Polymerizations. See also Copolymerization Depolymerization Polyesterification Polymers Prepolymerization Repolymerization Ring-opening polymerization Solid-state polymerization Solution polymerization Solvent-free polymerization Step-grown polymerization processes Vapor-phase deposition polymerization acid chloride, 155-157 ADMET, 4, 10, 431-461 anionic, 149, 174, 177-178 batch, 167 bulk, 166, 331 chain-growth, 4 continuous, 167, 548 coupling, 467 Friedel-Crafts, 332-334 Hoechst, 548 hydrolytic, 150-153 influence of water content on, 151-152, 154... [Pg.597]

Lignin, brown coal polymer of methacrylic acid, methacrylamide, hydroxyethyl acrylate, hydroxypropyl acrylate, vinyl acetate, methyl vinyl ether, ethyl vinyl ether, N-methylmeth-acrylamide, N,N-dimethylmethacrylamide, vinyl sulfonate, or 2-acrylamido-N-methylpropane sulfonic acid free radical polymerization of a water-soluble vinyl monomer in an aqueous suspension of coals [705,1847]... [Pg.57]

Monosaccharides are probably involved in the browning reactions that occur during the roasting of coffee. Caramelization involving the sugars alone, and Maillard reactions, between sugars and free amino acids, produce polymeric yellow to dark brown substances, known as melanoidins. These melanoidins can be extracted into hot water, separated and characterized.105... [Pg.141]

For most of the systems reported in the literature, C/K is not known—very often, neither K nor C is known. For two-component initiator-coinitiator systems, C is usually taken to he the initiator concentration [YZ] when the coinitiator is in excess or the coinitiator concentration [I] when the initiator is in excess. C may be lower than [YZ] or [I] due to association that is, only a fraction of [YZ] or [I] may be active in polymerization. This may also he the case for one-component initiators such as triflic acid. It would be prudent to determine the actual value of C in any polymerization system—usually a difficult task and seldom achieved. Experimental difficulties have also limited our knowledge of K values, which are obtained most directly from conductivity measurements or, indirectly, from kinetic data. A comparison of polymerization in the absence and presence of a common ion salt (e.g., tetra-n-butylammonium triflate for the triflic acid initiated polymerization) is useful for ascertaining whether significant amounts of free ions are present in a reaction system. [Pg.395]

The major approach to extending the lifetime of propagating species involves reversible conversion of the active centers to dormant species such as covalent esters or halides by using initiation systems with Lewis acids that supply an appropriate nucleophilic counterion. The equilibrium betweem dormant covalent species and active ion pairs and free ions is driven further toward the dormant species by the common ion effect—by adding a salt that supplies the same counterion as supplied by the Lewis acid. Free ions are absent in most systems most of the species present are dormant covalent species with much smaller amounts of active ion pairs. Further, the components of the reaction system are chosen so that there is a dynamic fast equilibrium between active and dormant species, as the rates of deactivation and activation are faster than the propagation and transfer rates. The overall result is a slower but more controlled reaction with the important features of living polymerization (Sec. 3-15). [Pg.404]

Untreated silica column can be advantageously used for HPLC preseparation of PAHs from triglycerides. The capacity of a silica column to retain fat (for columns of the same particle size) depends on the column size, the mobile phase composition, as well as the type and by-products (free acids and polymerized material) of the fat injected [706,713]. Off-line HPLC-HPLC, employing silica column (250 X 4.6 mm i.d., 5 pm of particle size) for sample preparation before RP-HPLC and spec-trofluorometric detection, was successfully applied for PAH determination in edible oils [659,691] and fish [714]. After PAH elution, the silica column needs to be backflushed with dichloromethane to remove the fat. The entire sample preparation step can be automated by using a backflush valve and a programmable switching valve box [691]. [Pg.642]

Polymerization of isobutylene, in contrast, is the most characteristic example of all acid-catalyzed hydrocarbon polymerizations. Despite its hindered double bond, isobutylene is extremely reactive under any acidic conditions, which makes it an ideal monomer for cationic polymerization. While other alkenes usually can polymerize by several different propagation mechanisms (cationic, anionic, free radical, coordination), polyisobutylene can be prepared only via cationic polymerization. Acid-catalyzed polymerization of isobutylene is, therefore, the most thoroughly studied case. Other suitable monomers undergoing cationic polymerization are substituted styrene derivatives and conjugated dienes. Superacid-catalyzed alkane selfcondensation (see Section 5.1.2) and polymerization of strained cycloalkanes are also possible.118... [Pg.735]

Surface lipids of plants. The thick cuticle (Fig. 1-6) that covers the outer surfaces of green plants consists largely of waxes and other lipids but also contains a complex polymeric matrix of cutin (stems and leaves) or suberin (roots and wound surfaces).135/135a Plant waxes commonly have C10 - C30 chains in both acid and alcohol components. Methyl branches are frequently present. A major function of the waxes is to inhibit evaporation of water and to protect the outer cell layer. In addition, the methyl branched components may inhibit enzymatic breakdown by microbes. Free fatty acids, free alcohols, aldehydes, ketones, 13-dike tones, and alkanes are also present in plant surface waxes. Chain lengths are usually C20 - C35.136 Hydrocarbon formation can occur in other parts of a plant as well as in the cuticle. Thus, normal heptane constitutes up to 98% of the volatile portion of the turpentine of Pin us jeffreyi.81... [Pg.1196]

Ulanski P, Merenyi G, Lind J, Wagner R, von Sonntag C (1999) The reaction of methyl radicals with hydrogen peroxide. J Chem Soc Perkin Trans 2 673-676 Ulanski P, Bothe E, Hildenbrand K, von Sonntag C (2000) Free-radical-induced chain breakage and depolymerization of polyfmethacrylic acid). Equilibrium polymerization in aqueous solution at room temperature. Chem Eur J 6 3922-3934... [Pg.133]

These 1987 resnlts concluded that classical metathesis catalyst systems were not sufficient and that Lewis acid cocatalyst-free systems were necessary if successM ADMET condensation polymerization were to become a reality. The key to snccessM ADMET polymerization was demonstrated " nsing the Lewis acid-free tungsten alkylidene metathesis catalyst (5a), the structure of which had been reported by Schrock et just one year earlier. When this... [Pg.2687]

Lewis acid-free Schrock aUcylidenes provide the means by which successful ADMET polymerization can be achieved, and the scope of this polymerization reaction has been found to be broad. The first high molecular weight polymer was produced by the ADMET condensation of 1,9-decadiene to polyoctenamer (equation 19). ... [Pg.2688]

The amino acids of a protein control its location in the cell. Some proteins are water soluble, whereas others are bound to the ceil membrane (plasma membrane), the mitochondrial membrane, and the membranes of the endoplasmic reticulum and nucleus. The association of a protein with a membrane is maintained by a stretch of lipophilic amino acids. Insertion of this stretch into the membrane occurs as the protein is synthesized. Water-soluble proteins are formed on ribosomes that "float" free in the cytoplasm. Membrane-bound proteins are formed on ribosomes that associate with the endoplasmic reticulum (ER). As the amino acids are polymerized in the vicinity of the F,R, a stretch of lipophilic acids becomes inserted into the membrane of the FR. This anchoring of the protein is maintained when it is shuttled from its location in the ER to its desired location in the plasma membrane. [Pg.47]


See other pages where Polymeric acids, free is mentioned: [Pg.312]    [Pg.312]    [Pg.202]    [Pg.42]    [Pg.300]    [Pg.416]    [Pg.433]    [Pg.330]    [Pg.195]    [Pg.266]    [Pg.115]    [Pg.155]    [Pg.263]    [Pg.308]    [Pg.448]    [Pg.501]    [Pg.1531]    [Pg.141]    [Pg.23]    [Pg.205]    [Pg.219]    [Pg.242]    [Pg.312]    [Pg.138]    [Pg.173]    [Pg.515]    [Pg.300]    [Pg.3370]    [Pg.308]    [Pg.3323]    [Pg.670]   
See also in sourсe #XX -- [ Pg.8 ]




SEARCH



Free radical polymerization phosphonic acid

© 2024 chempedia.info