Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acids catalytic properties

The characteristics of aluminophosphate molecular sieves include a univariant framework composition with Al/P = 1, a high degree of structural diversity and a wide range of pore sizes and volumes, exceeding the pore sizes known previously in zeolite molecular sieves with the VPI-5 18-membered ring material. They are neutral frameworks and therefore have nil ion-exchange capacity or acidic catalytic properties. Their surface selectivity is mildly hydrophilic. They exhibit excellent thermal and hydrothermal stability, up to 1000 °C (thermal) and 600 °C (steam). [Pg.9]

The introduction of silicon into hypothetical phosphorus sites produces negatively charged frameworks with cation-exchange properties and weak to mild acidic catalytic properties. Again, as in the case of the aluminophosphate molecular sieves, they exhibit excellent thermal and hydrothermal stability. [Pg.9]

Ogura, M., Shinomiya, S. Y., Tateno, J., Nara, Y., Nomura, M., Kikuchi, E. and Matsukata, M. Alkali-treatment technique - New method for modification of structural and acid-catalytic properties of ZSM-5 zeolites, Appl. Catal., A, 2001, 219, 33 43. [Pg.34]

Aluminophosphates (AIPO4S) are a class of materials which, like the aluminosilicate zeolites, assume open framework structures containing channels of molecular dimensions with molecular sieve properties. Since the AIPO4 structures contain equal numbers of AIO4 and PO4 units there is no necessity for charge-balancing extraframework cations and consequently no sites to provide acid catalytic properties. [Pg.448]

Preparation of new solid super-acid catalyst, titanium sulfate supported on zirconia and its acid catalytic properties... [Pg.377]

A new dimension to acid-base systems has been developed with the use of zeolites. As illustrated in Fig. XVIII-21, the alumino-silicate faujasite has an open structure of interconnected cavities. By exchanging for alkali metal (or NH4 and then driving off ammonia), acid zeolites can be obtained whose acidity is comparable to that of sulfuric acid and having excellent catalytic properties (see Section XVIII-9D). Using spectral shifts, zeolites can be put on a relative acidity scale [195]. An important added feature is that the size of the channels and cavities, which can be controlled, gives selectivity in that only... [Pg.719]

Catalytic Properties. In zeoHtes, catalysis takes place preferentially within the intracrystaUine voids. Catalytic reactions are affected by aperture size and type of channel system, through which reactants and products must diffuse. Modification techniques include ion exchange, variation of Si/A1 ratio, hydrothermal dealumination or stabilization, which produces Lewis acidity, introduction of acidic groups such as bridging Si(OH)Al, which impart Briimsted acidity, and introducing dispersed metal phases such as noble metals. In addition, the zeoHte framework stmcture determines shape-selective effects. Several types have been demonstrated including reactant selectivity, product selectivity, and restricted transition-state selectivity (28). Nonshape-selective surface activity is observed on very small crystals, and it may be desirable to poison these sites selectively, eg, with bulky heterocycHc compounds unable to penetrate the channel apertures, or by surface sdation. [Pg.449]

Ca.ta.lysis, The readily accessible +1 and +3 oxidation states of rhodium make it a useful catalyst. There are several reviews of the catalytic properties of rhodium available (130—132). Rhodium-catalyzed methanol carbonylation (Monsanto process) accounted for 81% of worldwide acetic acid by 1988 (133). The Monsanto acetic acid process is carried out at 175°0 and 1.5 MPa (200 psi). Rhodium is introduced as RhCl3 but is likely reduced in a water... [Pg.180]

Other important uses of stannic oxide are as a putty powder for polishing marble, granite, glass, and plastic lenses and as a catalyst. The most widely used heterogeneous tin catalysts are those based on binary oxide systems with stannic oxide for use in organic oxidation reactions. The tin—antimony oxide system is particularly selective in the oxidation and ammoxidation of propylene to acrolein, acryHc acid, and acrylonitrile. Research has been conducted for many years on the catalytic properties of stannic oxide and its effectiveness in catalyzing the oxidation of carbon monoxide at below 150°C has been described (25). [Pg.65]

Proceedingsof the Annual International AlChE Meeting, Washington, DC, November 27-December 2, 1988 edited by M.L. Occelli and R.G. Anthony Volume 51 NewSolid Acids and Bases. Their Catalytic Properties by K. Tanabe, M. Misono, Y. Ono and H. Hattori Volume 52 Recent Advances in Zeolite Science. Proceedings of the 1989 Meeting of the British Zeolite Association, Cambridge, April 17-19,1989 edited by J. Klinowsky and P.J. Barrie... [Pg.263]

Enzymes are proteins of high molecular weight and possess exceptionally high catalytic properties. These are important to plant and animal life processes. An enzyme, E, is a protein or protein-like substance with catalytic properties. A substrate, S, is the substance that is chemically transformed at an accelerated rate because of the action of the enzyme on it. Most enzymes are normally named in terms of the reactions they catalyze. In practice, a suffice -ase is added to the substrate on which die enzyme acts. Eor example, die enzyme dial catalyzes die decomposition of urea is urease, the enzyme dial acts on uric acid is uricase, and die enzyme present in die micro-organism dial converts glucose to gluconolactone is glucose oxidase. The diree major types of enzyme reaction are ... [Pg.21]

Biocatalysis refers to catalysis by enzymes. The enzyme may be introduced into the reaction in a purified isolated form or as a whole-cell micro-organism. Enzymes are highly complex proteins, typically made up of 100 to 400 amino acid units. The catalytic properties of an enzyme depend on the actual sequence of amino acids, which also determines its three-dimensional structure. In this respect the location of cysteine groups is particularly important since these form stable disulfide linkages, which hold the structure in place. This three-dimensional structure, whilst not directly involved in the catalysis, plays an important role by holding the active site or sites on the enzyme in the correct orientation to act as a catalyst. Some important aspects of enzyme catalysis, relevant to green chemistry, are summarized in Table 4.3. [Pg.124]

The types of ionic liquids shown in Figure 5.4 have been most extensively studied, especially ones based on chloroaluminate. Whilst these chloroaluminate materials also display useful Lewis acid properties they are highly air and moisture sensitive, which renders them relatively commercially unattractive. Newer ionic liquids containing C104 and NOa anions, for example, which are less air and moisture sensitive, are now being more widely studied, but these are less catalytically active. Other than lack of vapour pressure and catalytic properties there are several other features common to most ionic liquids that make them attractive reaction solvents. These include ... [Pg.156]

The acidic and catalytic properties of chloroaluminate(iii) ionic liquids are frequently said to arise from the species AI2CI7" which is generated according to Equation (5.1). [Pg.157]

Proceedings of the Annual International AlChE Meeting, Washington, DC, November 27-December 2, 1988 edited by M.L. Occelli and R.G.Anthony Volume 51 Mew Solid Acids and Bases.Their Catalytic Properties... [Pg.889]

The different classes of Ru-based catalysts, including crystalline Chevrel-phase chalcogenides, nanostructured Ru, and Ru-Se clusters, and also Ru-N chelate compounds (RuNj), have been reviewed recently by Lee and Popov [29] in terms of the activity and selectivity toward the four-electron oxygen reduction to water. The conclusion was drawn that selenium is a critical element controlling the catalytic properties of Ru clusters as it directly modifies the electronic structure of the catalytic reaction center and increases the resistance to electrochemical oxidation of interfacial Ru atoms in acidic environments. [Pg.316]

From the previous results, it has been proven that the nature of the support, although it has no significant influence on the Pd electronic properties, modifies the catalytic properties of the solids To permit a better understanding of these supports effects, the surface properties of the supports (in the presence of the metal) have been studied, in particular the acidic properties and the oxygen mobilities. The A1203 and Z1O2 supports have been mainly onsidered. [Pg.351]

Tanabe KJ (1970) Solid Acids and Bases Their Catalytic Properties. Academic Press, New York... [Pg.111]

It was found in the 1960s that disperse platinum catalyst supported by certain oxides will in a number of cases be more active than a similar catalyst supported by carbon black or other carbon carrier. At platinum deposits on a mixed carrier of WO3 and carbon black, hydrogen oxidation is markedly accelerated in acidic solutions (Hobbs and Tseung, 1966). This could be due to a partial spillover of hydrogen from platinum to the oxide and formation of a tungsten bronze, H WOj (0 < a < 1), which according to certain data has fair catalytic properties. [Pg.539]


See other pages where Acids catalytic properties is mentioned: [Pg.203]    [Pg.106]    [Pg.109]    [Pg.280]    [Pg.596]    [Pg.378]    [Pg.156]    [Pg.20]    [Pg.203]    [Pg.106]    [Pg.109]    [Pg.280]    [Pg.596]    [Pg.378]    [Pg.156]    [Pg.20]    [Pg.390]    [Pg.186]    [Pg.177]    [Pg.88]    [Pg.586]    [Pg.153]    [Pg.315]    [Pg.739]    [Pg.448]    [Pg.24]    [Pg.25]    [Pg.179]    [Pg.363]    [Pg.265]    [Pg.310]    [Pg.295]    [Pg.767]    [Pg.25]    [Pg.28]    [Pg.453]    [Pg.567]    [Pg.600]   
See also in sourсe #XX -- [ Pg.156 ]




SEARCH



Catalytic properties

© 2024 chempedia.info