Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acids, aromatic, alkylation

Cephalexin 7- (D-a-Aminophenylacetamido) cephalosporanic acid Aromatic alkylation, amination, imine formation, amidation (sidechain), fermentation, deamidation (penicillin nucleus), acid-catalyzed ring expansion... [Pg.30]

Ibuprofen (+) -2- (4-Isobutylphenyl) propionic acid Aromatic alkylation, HF-catalyzed aromatic acetylation, palladium-catlayzed carbonylation, alkene hydration... [Pg.30]

Acid-catalyzed alkylation of aromatics with alcohols themselves is widely used. Whereas tertiary (and secondary) alcohols react with rel-... [Pg.192]

The term naphthenic acid, as commonly used in the petroleum industry, refers collectively to all of the carboxyUc acids present in cmde oil. Naphthenic acids [1338-24-5] are classified as monobasic carboxyUc acids of the general formula RCOOH, where R represents the naphthene moiety consisting of cyclopentane and cyclohexane derivatives. Naphthenic acids are composed predorninandy of aLkyl-substituted cycloaUphatic carboxyUc acids, with smaller amounts of acycHc aUphatic (paraffinic or fatty) acids. Aromatic, olefinic, hydroxy, and dibasic acids are considered to be minor components. Commercial naphthenic acids also contain varying amounts of unsaponifiable hydrocarbons, phenoHc compounds, sulfur compounds, and water. The complex mixture of acids is derived from straight-mn distillates of petroleum, mosdy from kerosene and diesel fractions (see Petroleum). [Pg.509]

Catalysts. Nearly aU. of the industrially significant aromatic alkylation processes of the past have been carried out in the Hquid phase with unsupported acid catalysts. For example, AlCl HF have been used commercially for at least one of the benzene alkylation processes to produce ethylbenzene (104), cumene (105), and detergent alkylates (80). Exceptions to this historical trend have been the use of a supported boron trifluoride for the production of ethylbenzene and of a soHd phosphoric acid (SPA) catalyst for the production of cumene (59,106). [Pg.53]

Sodium (metal). Used as a fine wire or as chips, for more completely drying ethers, saturated hydrocarbons and aromatic hydrocarbons which have been partially dried (for example with calcium chloride or magnesium sulfate). Unsuitable for acids, alcohols, alkyl halides, aldehydes, ketones, amines and esters. Reacts violently if water is present and can cause a fire with highly flammable liquids. [Pg.28]

Medium reactivity contaminants alcohols, ketones, organic acids, esters, alkyl-substituted aromatics, nitro-substituted aromatics, carbohydrates. [Pg.146]

Lewis acid-catalyzed additions can be carried out in the presence of other chiral ligands that induce enantioselectivity.156 Titanium TADDOL induces enantioselectivity in alkylzinc additions to aldehydes. A variety of aromatic, alkyl, and a, (3-unsaturated aldehydes give good results with primary alkylzinc reagents.157... [Pg.656]

Scheme 12.22 provides some examples of the oxidation of aromatic alkyl substituents to carboxylic acid groups. Entries 1 to 3 are typical oxidations of aromatic methyl groups to carboxylic acids. Entries 4 and 5 bring the carbon adjacent to the aromatic ring to the carbonyl oxidation level. [Pg.1148]

Compounds with an acidity constant, pK, in the range of 4 to 10, i.e. weak organic acids or bases, are present in two species forms at ambient pH. This pA a.i. range includes aromatic alcohols and thiols, carboxylic acids, aromatic amines and heterocyclic amines [15]. Conversely, alkyl-H and saturated alcohols do not undergo protonation/deprotonation in water (pA iw 14). [Pg.209]

In relatively acid solutions, aromatic sulfinic acids and alkyl sulfides undergo an interesting reaction having the stoichiometry shown in (110) (Kice and... [Pg.103]

The Delft synthesis makes use of an acid-catalyzed ring closure - in fact an intramolecular aromatic alkylation - of a l-(3,5-dihydroxy-4-methoxybenzyl) isoquinoline derivative that is prepared starting from (natural) gallic acid. One of the hydroxyl groups is removed via a Pd/ C hydrogenation of the benzyl ether. Other catalytic steps play an important role some steps were improved recently [27]. The crucial step in the Rice synthesis makes use of a l-(2-bromo-5-hydroxy-4-methoxybenzyl)isoquinoline derivative that is also cyclized in an acid-catalyzed ring closure to the morphinan skeleton, followed by catalytic removal of the bromo substituent (Scheme 5.8). [Pg.110]

The three-component synthesis of benzo and naphthofuran-2(3H)-ones from the corresponding aromatic alcohol (phenols or naphthols) with aldehydes and CO (5 bar) can be performed under palladium catalysis (Scheme 16) [59,60]. The mechanism involves consecutive Friedel-Crafts-type aromatic alkylation and carbonylation of an intermediate benzylpalla-dium species. The presence of acidic cocatalysts such as TFA and electron-donating substituents in ortho-position (no reaction with benzyl alcohol ) proved beneficial for both reaction steps. [Pg.224]

Most of the commercial zeolite catalyzed processes occur either through acid catalysis fluid catalytic cracking (FCC), aromatic alkylation, methanol to olefins (MTO),... [Pg.234]

Tellurium tetrachloride as reagent for the conversion of alcohols into alkyl chlorides and as a Lewis acid catalyst for aromatic alkylation... [Pg.339]

The reaction of toluene with propylene and higher olefins is similar to that of toluene with ethylene. In contrast to the acid-catalyzed alkylation of aromatics, the base-catalyzed reaction of toluene with propylene takes place less rapidly than the reaction with ethylene. With more severe conditions, such as temperatures of 225-250°, the reaction of toluene with propylene may be made to proceed satisfactorily, but butylenes yield only small amounts of products even at 300°, as reported by Pines and Mark 20). Such conditions result not only in more hydrogen transfer, but alkyl-group... [Pg.129]

The catalytic cracking of four major classes of hydrocarbons is surveyed in terms of gas composition to provide a basic pattern of mode of decomposition. This pattern is correlated with the acid-catalyzed low temperature reverse reactions of olefin polymerization and aromatic alkylation. The Whitmore carbonium ion mechanism is introduced and supported by thermochemical data, and is then applied to provide a common basis for the primary and secondary reactions encountered in catalytic cracking and for acid-catalyzed polymerization and alkylation reactions. Experimental work on the acidity of the cracking catalyst and the nature of carbonium ions is cited. The formation of liquid products in catalytic cracking is reviewed briefly and the properties of the gasoline are correlated with the over-all reaction mechanics. [Pg.5]

The acid-catalyzed reactions of olefin polymerization and aromatic alkylation by olefins have been very well explained by the carbonium ion mechanism developed by Whitmore (21). This mechanism provides the basis of the ensuing discussion, which is devoted to the application of such concepts (7,17) to catalytic cracking systems and to the provision of much added support in terms of recently developed structural energy relationships among hydrocarbons and new experimental evidence. [Pg.9]


See other pages where Acids, aromatic, alkylation is mentioned: [Pg.63]    [Pg.553]    [Pg.565]    [Pg.48]    [Pg.48]    [Pg.287]    [Pg.267]    [Pg.38]    [Pg.413]    [Pg.234]    [Pg.807]    [Pg.42]    [Pg.137]    [Pg.1003]    [Pg.162]    [Pg.17]    [Pg.86]    [Pg.505]    [Pg.538]    [Pg.627]    [Pg.145]    [Pg.462]    [Pg.807]    [Pg.769]    [Pg.439]    [Pg.287]    [Pg.524]    [Pg.362]    [Pg.81]    [Pg.8]    [Pg.102]   
See also in sourсe #XX -- [ Pg.72 ]




SEARCH



Acidic zeolite aromatic compounds alkylation

Alkyl aromatics

Alkyl halides aromatics + Lewis acids

Alkylated aromatics

Alkylation aromatic

Aromatic alkylations

Aromatics alkylation

© 2024 chempedia.info