Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acidity, ligand effects

Studies of ligand effects on Lewis-acid catalysed reactions in water... [Pg.76]

There are a few documented examples of studies of ligand effects on hydrolysis reactions. Angelici et al." investigated the effect of a number of multidentate ligands on the copper(II) ion-catalysed hydrolysis of coordinated amino acid esters. The equilibrium constant for binding of the ester and the rate constant for the hydrolysis of the resulting complex both decrease in the presence of ligands. Similar conclusions have been reached by Hay and Morris, who studied the effect of ethylenediamine... [Pg.76]

In Chapter 2 the Diels-Alder reaction between substituted 3-phenyl-l-(2-pyridyl)-2-propene-l-ones (3.8a-g) and cyclopentadiene (3.9) was described. It was demonstrated that Lewis-acid catalysis of this reaction can lead to impressive accelerations, particularly in aqueous media. In this chapter the effects of ligands attached to the catalyst are described. Ligand effects on the kinetics of the Diels-Alder reaction can be separated into influences on the equilibrium constant for binding of the dienoplule to the catalyst (K ) as well as influences on the rate constant for reaction of the complex with cyclopentadiene (kc-ad (Scheme 3.5). Also the influence of ligands on the endo-exo selectivity are examined. Finally, and perhaps most interestingly, studies aimed at enantioselective catalysis are presented, resulting in the first example of enantioselective Lewis-acid catalysis of an organic transformation in water. [Pg.82]

Effects of L- -amino acid ligands - Stepping on the tail of enantioselectivity The naturally occurring -amino acids form a class of readily available strongly coordinating ligands, which exhibit broad stmctural variation. Moreover, their availability in enantiomerically pure form offers opportunities for enantioselective catalysis. Some derivatives of these compounds have been... [Pg.85]

NMR signals of the amino acid ligand that are induced by the ring current of the diamine ligand" ". From the temperature dependence of the stability constants of a number of ternary palladium complexes involving dipeptides and aromatic amines, the arene - arene interaction enthalpies and entropies have been determined" ". It turned out that the interaction is generally enthalpy-driven and counteracted by entropy. Yamauchi et al. hold a charge transfer interaction responsible for this effect. [Pg.89]

Also the arene-arene interactions, as encountered in Chapter 3, are partly due to hydrophobic effects, which can be ranked among enforced hydrophobic interactions. Simultaneous coordination of an aromatic oc amino acid ligand and the dienophile to the central copper(II) ion offers the possibility of a reduction of the number of water molecules involved in hydrophobic hydration, leading to a strengthening of the arene-arene interaction. Hence, hydrophobic effects can have a beneficial influence on the enantioselectivity of organic reactions. This effect is anticipated to extend well beyond the Diels-Alder reaction. [Pg.169]

Commercial Stabilizers. There is a great variety of commercial formulations utilizing the mixture of the alkaU and alkaline-earth metal salts and soaps. In many cases, products are custom formulated to meet the needs of a particular appHcation or customer. The acidic ligands used ia these products vary widely and have dramatic effects on the physical properties of the PVC formulations. The choice of ligands can affect the heat stabiHty, rheology, lubricity, plate-out tendency, clarity, heat sealabiHty, and electrical and mechanical properties of the final products. No single representative formulation can cover the variety of PVC appHcations where these stabilizers are used. [Pg.550]

Similar additions may be performed with the enamine 13. However, with 3-buten-2-one or methyl 2-propenoate Lewis acid catalysis is needed to activate the Michael acceptor chloro-trimethylsilane proved to be best suited for this purpose. A remarkable solvent effect is seen in these reactions. A change from THF to HMPA/toluene (1 1) results in a reversal of the absolute configuration of the product 14, presumably due to a ligand effect of HMPA235. [Pg.985]

Although the self-assembly process is easy and convenient to operate, success in obtaining the expected object is still a challenge for chemists. The aims of this article are to summarize the coordination chemistry of amino acids, to review our recent work on 3d-4f heterometallic clusters bearing amino acid ligands, and to expound the effects of several factors of influence on self-assembly, such as presence of a secondary ligand, lanthanides, crystallization conditions, the ratio of Cu2+ to amino acids, and transition metal ions. We hope that our systematic researches on the 3d-4f amino acid clusters can provide a useful framework of reference for the study of other self-assembly systems. [Pg.173]

The polarization effects of metals have a substantial impact particularly in two areas the promotion of the hydrolysis and other nucleophilic reactions of chelated ligands and the enhanced ionization of coordinated acidic ligands. Their importance has encouraged extensive attacks on the effects. [Pg.308]

Glutathione S transferases bind bile acids in vitro but doubt has been cast over whether this happens in vivo as these enzymes were not labelled by fluorescently labelled bile acids in experiments to identify the carrier proteins but may play a role with the raised levels in cholestasis. Liver fatty-acid-binding protein has been shown to bind bile acids by using a displacement assay with fluorescent fatty-acid ligand. This work clearly showed displacement to be directly related to hydrophobicity, such that lithocholate conjugates had the greatest effect. This may indicate a mechanism to minimise toxicity within the hepatocyte. [Pg.20]

Bulk Pt alloys for the electrooxidation of formic acid have been less frequently studied compared to underpotential deposition (upd) modified Pt surfaces. The Pt50Ru5o surface was again found to be one of the most active Pt-Ru surfaces. Underpotentially deposited metals, such as Bi, Se, Sb, were studied as reaction modifiers for Pt surfaces and provided significant electrocatalytic activity increases. Electronic factors (ligand effects) rather than bifunctional effects were held responsible for these activity modifications, because the metal coverages that caused the activity gains were extremely small. [Pg.445]


See other pages where Acidity, ligand effects is mentioned: [Pg.370]    [Pg.370]    [Pg.82]    [Pg.87]    [Pg.88]    [Pg.91]    [Pg.175]    [Pg.175]    [Pg.545]    [Pg.185]    [Pg.389]    [Pg.315]    [Pg.174]    [Pg.386]    [Pg.41]    [Pg.77]    [Pg.638]    [Pg.292]    [Pg.57]    [Pg.34]    [Pg.216]    [Pg.223]    [Pg.49]    [Pg.221]    [Pg.296]    [Pg.52]    [Pg.210]    [Pg.728]    [Pg.89]    [Pg.338]    [Pg.177]    [Pg.829]    [Pg.316]   
See also in sourсe #XX -- [ Pg.25 ]




SEARCH



Ligand effect

Ligand effective

Ligands acids

© 2024 chempedia.info