Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acidity IR spectra

The seeds of the Costa Rican plant Aieleia Herbert smith ii are avoided by all seed eaters (except a weevil that adapts them for its defence) because they contain two toxic amino acids (IR spectra like other amino acids). Neither compound is chiral. What is the structure of these compounds They can easily be separated because one (A) is soluble in aqueous base but the other (B) is not. [Pg.850]

Neural networks have been applied to IR spectrum interpreting systems in many variations and applications. Anand [108] introduced a neural network approach to analyze the presence of amino acids in protein molecules with a reliability of nearly 90%. Robb and Munk [109] used a linear neural network model for interpreting IR spectra for routine analysis purposes, with a similar performance. Ehrentreich et al. [110] used a counterpropagation network based on a strategy of Novic and Zupan [111] to model the correlation of structures and IR spectra. Penchev and co-workers [112] compared three types of spectral features derived from IR peak tables for their ability to be used in automatic classification of IR spectra. [Pg.536]

IR spectroscopy has also been used in structural problems in 2- and 3-hydroxypyrido[3,4-f ]pyrazines (63JCS5156), in 8-oxopyrido[2,3-f ]pyrazine-7-acids (73MI21501) and in the pyrido[3,4-f ]quinoxaline field (74JCS(P1)1965). IR spectra were recommended for the distinction of isomeric products in the Isay reaction (Section 2.15.15.6.1) (71TH21500) UV spectra were not satisfactory. The Raman spectra of a number of 1- and 3-deazaflavin analogues have been recorded and discussed (80BBA(623)77). [Pg.249]

Benzo[b]furan-2-carboxylic acids bromination, 4, 602 chloromethylation, 4, 602 from coumarins, 3, 686 IR spectra, 4, 590 methyl ester... [Pg.548]

IsoxazoIe-5-carboxyIic acid anilide, 3,4-diphenyI-synthesis, 6, 86 Isoxazolecarboxylic acids applications, 6, 128 IR spectra, 6, 5 potentiometry, 6, 11 reactions, 6, 52 synthesis, 6,27, 85-86 thermochemistry, 6, 10 IsoxazoIe-3,4-dicarboxyIic acid esters... [Pg.688]

H-Pyran, 2-alkoxy-4-methyl-2,3-dihydro-conformation, 3, 630 4H-Pyran, 2-amino-IR spectra, 3, 593 synthesis, 3, 758 4H-Pyran, 4-benzylidene-synthesis, 3, 762 4H-Pyran, 2,3-dihydro-halogenation, 3, 723 hydroboration, 3, 723 oxepines from, 3, 725 oxidation, 3, 724 reactions, with acids, 3, 723 with carbenes, 3, 725 4H-Pyran, 5,6-dihydro-synthesis, 2, 91 4H-Pyran, 2,6-diphenyl-hydrogenation, 3, 777 4H-Pyran, 6-ethyl-3-vinyl-2,3-dihydro-reactions, with acids, 3, 723 4H-Pyran, 2-methoxy-synthesis, 3, 762 4H-Pyran, 2,4,4,6-tetramethyl-IR spectra, 3, 593 4H-Pyran, 2,4,6-triphenyl-IR spectra, 3, 593... [Pg.764]

IR spectra, 5, 201 Pyrazole, 1-methyl-anodic oxidation, 5, 247 hydrogen exchange acid-catalyzed, 5, 239 2-oxide... [Pg.772]

Pyrazolino[2,3-c][l,2,3]triazoles, 5, 702 Pyrazolium hydroxide, l,2-dimethyl-3,5-diphenylanhydro-4-hydroxy-IR spectra, 5, 201 Pyrazolium salts dequatemization, 5, 269 H NMR, 5, 185 hydrogen exchange at ring carbon, 5, 245 mesoionic compounds, 5, 171 nitrodebromination, 5, 237 reactivity, 5, 217 reduction, 5, 68, 243 synthesis, 5, 156 UV spectra, 5, 199 Pyrazolium salts, amino-reactions, 5, 262 Pyrazolium salts, bromo-nucleophilic displacements, 5, 266 Pyrazolium salts, 1,2-dimethyl-deuteration, 5, 175, 245 hydrogen exchange, 5, 71 acid-catalyzed, 5, 239 reactions... [Pg.777]

Pyrimidin-5-amine, 4-methylamino-synthesis, 3, 121 Pyrimidin-5-amine, 4-oxo-purfne synthesis from, 5, 582 Pyrimidinamines acylation, 3, 85 alkylation, 3, 86 basic pXa, 3, 60-61 diazotization, 3, 85 Dimroth rearrangement, 3, 86 electrophilic reactions, 3, 68 Frankland-Kolbe synthesis, 3, 116 hydrolysis, 3, 84 IR spectra, 3, 64 N NMR, 3, 64 nitration, 3, 69 Principal Synthesis, 3, 129 reactivity, 3, 84-88 structure, 3, 67 synthesis, 3, 129 Pyrimidin-2-amines alkylation, 3, 61, 86 basic pK , 3, 60 diazotization, 3, 85 hydrogenation, 3, 75 hydrolysis, 3, 84 mass spectra, 3, 66 Pyrimidin-4-amines acidity, S, 310 alkylation, 3, 61, 86 basic pXa, 3, 61 Schifi base, 3, 85 synthesis, 3, 110, 114 1,3,5-triazines from, 3, 518 Pyrimidin-5-amines basic pXj, 3, 61 hydrogenation, 3, 75 reactions... [Pg.802]

IR spectra, 3, 596 occurrence, 3, 689 4-Ylidenebutenolides occurrence, 4, 696 4-Ylidenetetronic acid synthesis, 4, 696 Ylides... [Pg.925]

The authors claim that these associations, which are destroyed in fixed compounds, play an important role in the calculation of Ty.The cases of 1,2,4-triazole-5-thiones 74 [97SA(A)699] and of pyridone dimers 15a-15a and 15a-15b were also studied [96MI(13)65]. (3) The recording of IR spectra in solution at different temperatures to determine the effect of the temperature on Kj-, for instance, in pyrazolinones [83JPR(325)238] and in cytosine-guanine base pairs [92MI(9)881]. (4) The determination of the equilibrium 2-aminopyridine/acetic acid 2-aminopyridinium acetate (see Section III.E) in the acid-base complex was carried out by IR (97NKK100). [Pg.48]

Unexpectedly strong intermolecular hydrogen bonding has been reported by IR spectroscopic studies for tetrahydro-4,7-phenanthroline-l,10-dione-3,8-dicarboxylic acids, which exist in the oxo-hydroxy form 165 in both solid state and in solution [78JCS(CC)369].Tlie conclusion was based on comparison of B-, C-, and D-type bands for 165 and their dimethyl esters (detection of hydrogen bonding) and on analysis of IR spectra in the 6 /xm region (pyridine- and pyridone-like bands). [Pg.100]

The UV and IR spectra eliminate structures with a CN double bond. The isomerism of nitrones and oxaziranes thus cannot be a result of CIS or traris arrangement of substituents about a double bond. The carbon atoms of an oxazirane are still at the oxidation level of the carbonyl compound used in its syntheses. By acid hydrolysis, for example, 2-terf-butyl-3-phenyloxazirane (9) can be split into benzaldehyde and tert-butylhydroxylamine fEq. (8)]. ... [Pg.90]

The IR spectra of isoxazole derivatives have been extensively investigated. " The most exhaustive and precise data, including both the characteristic frequencies and intensities, were reported by Katritzky and Boulton " for isoxazole and its homologs, aryl- and alkoxy-isoxazoles, acids, and some other derivatives. [Pg.380]


See other pages where Acidity IR spectra is mentioned: [Pg.110]    [Pg.1075]    [Pg.492]    [Pg.1721]    [Pg.359]    [Pg.110]    [Pg.1075]    [Pg.492]    [Pg.1721]    [Pg.359]    [Pg.584]    [Pg.819]    [Pg.403]    [Pg.458]    [Pg.529]    [Pg.531]    [Pg.564]    [Pg.586]    [Pg.589]    [Pg.597]    [Pg.652]    [Pg.656]    [Pg.677]    [Pg.681]    [Pg.738]    [Pg.762]    [Pg.774]    [Pg.775]    [Pg.810]    [Pg.863]    [Pg.819]    [Pg.424]    [Pg.496]   
See also in sourсe #XX -- [ Pg.147 ]




SEARCH



Acids IR spectrum

Carboxylic acid derivatives IR spectra

Hexanedioic acid IR spectrum

IR acidity

Spectra (IRS) of Bile Acids

© 2024 chempedia.info