Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acidic Hydrocarbons

Increased agitation of a given acid—hydrocarbon dispersion results in an increase in interfacial areas owing to a decrease in the average diameter of the dispersed droplets. In addition, the diameters of the droplets also decrease to relatively low and nearly constant values as the volume % acid in the dispersions approaches either 0 or 100%. As the droplets decrease in si2e, the ease of separation of the two phases, following completion of nitration, also decreases. [Pg.34]

Thermal decomposition of dihydroperoxides results in initial homolysis of an oxygen—oxygen bond foUowed by carbon—oxygen and carbon—carbon bond cleavages to yield mixtures of carbonyl compounds (ketones, aldehydes), esters, carboxyHc acids, hydrocarbons, and hydrogen peroxide. [Pg.114]

The relative stability of the anions derived from cyclopropene and cyclopentadiene by deprotonation is just the reverse of the situation for the cations. Cyclopentadiene is one of the most acidic hydrocarbons known, with a of 16.0. The plCs of triphenylcyclo-propene and trimethylcyclopropene have been estimated as 50 and 62, respectively, from electrochemical cycles. The unsubstituted compound would be expected to fall somewhere in between and thus must be about 40 powers of 10 less acidic than cyclopentadiene. MP2/6-31(d,p) and B3LYP calculations indicate a small destabilization, relative to the cyclopropyl anion. Thus, the six-7c-electron cyclopentadienide ion is enormously stabilized relative to the four-7c-electron cyclopropenide ion, in agreement with the Hixckel rule. [Pg.526]

The first vessel in the blowdown system is therefore an acid-hydrocarbon separator. This drum is provided with a pump to transfer disengaged acid to the spent acid tank. Disengaged liquid hydrocarbon is preferably pumped back to the process, or to slop storage or a regular non-condensible lowdown drum. The vented vapor stream from the acid-hydrocarbon separator is bubbled through a layer of caustic soda solution in a neutralizing drum and is then routed to the flare header. To avoid corrosion in the special acid blowdown system, no releases which may contain water or alkaline solutions are routed into it. [Pg.234]

Bromophenol blue (3.0...4.6) aliphatic carboxylic acids [225 — 228] malonic and lactic acids [229] palmitic and lactic acids [230] malonic, glycolic, malic, citric, tartaric, ketoglutaric, galacturonic and oxalic acids [196] dicarboxylic acids, succinic acid [231] indoleacetic acid, trichloroacetic acid [232] palmitic acid, palmityl- and stearyllactic acid [223] benzoic, sorbic and salicylic acid [234] metabolites of ascorbic acid [235] chloropropionic acid [236] oligogalacturonic acids [237] amino acids, hydrocarbons, mono-, di- and triglycerides [238] xylobiose, xylose, glucose and derivatives [239] sugar alcohols [91] toxaphene [240]... [Pg.45]

As enolate precursors can be used CH-acidic carbonyl compounds such as malonic esters, cyanoacetic esters, acetoacetic esters and other /3-ketoesters, as well as aldehydes and ketones. Even CH-acidic hydrocarbons such as indene and fluorene can be converted into suitable carbon nucleophiles. [Pg.201]

In practice, both the cyciopentadienyl cation and the radical are highly reactive and difficult to prepare. Neither shows any sign of the stability expected for an aromatic system. The six-77-electron cyciopentadienyl anion, by contrast, is easily prepared and remarkably stable. In fact, cyclopentadiene is one of the most acidic hydrocarbons known, with p/C, = 16, a value comparable to that of water Cyclopentadiene is acidic because the anion formed by loss of H+ is so stable (Figure 15.5). [Pg.526]

The easiest access to most benzyllithium, -sodium, or -potassium derivatives consists of the deprotonation of the corresponding carbon acids. Hydrocarbons, such as toluene, exhibit a remarkably low kinetic acidity. Excess toluene (without further solvent) is converted into benzyllithium by the action of butyllithium in the presence of complexing diamines such as A. Af.Af.jV -tetramethylethylenediamine (TMEDA) or l,4-diazabicyclo[2.2.2]octane (DABCO) at elevated temperatures1 a procedure is published in reference 2. [Pg.189]

Water-in-oil macroemulsions have been proposed as a method for producing viscous drive fluids that can maintain effective mobility control while displacing moderately viscous oils. For example, the use of water-in-oil and oil-in-water macroemulsions have been evaluated as drive fluids to improve oil recovery of viscous oils. Such emulsions have been created by addition of sodium hydroxide to acidic crude oils from Canada and Venezuela. In this study, the emulsions were stabilized by soap films created by saponification of acidic hydrocarbon components in the crude oil by sodium hydroxide. These soap films reduced the oil/water interfacial tension, acting as surfactants to stabilize the water-in-oil emulsion. It is well known, therefore, that the stability of such emulsions substantially depends on the use of sodium hydroxide (i.e., caustic) for producing a soap film to reduce the oil/water interfacial tension. [Pg.202]

See Nitric acid Hydrocarbons (references 7,8) See other NITROARYL COMPOUNDS... [Pg.1039]

It reacts violently with charring, or explodes in contact with cone, sulfuric acid. See Nitric acid Hydrocarbons... [Pg.1645]

The ability of the stable carbene 218 to deprotonate acidic hydrocarbons was examined by NMR in (CD3)2S0.153 Indene (pJta = 20.1) was completely converted to its anion whereas 9-phenylxanthene (pAfa = 27.7) was not measurably deprotonated. The NMR spectra of 1 1 mixtures of 218 with fluorene (pXa = 22.9) and 2,3-benzofluorene (pA"a = 23.5) showed separate absorptions for the hydrocarbons and their anions. From the integration of these spectra, P a = 24.0 for 218 was derived. In THF, 218 failed to deprotonate fluorene but almost completely deprotonated indene. The proton transfer from hydrocarbons to 218 creates ions (ion pairs) from neutral species, which will be less favorable in solvents of lower polarity. [Pg.42]

The alkylation reaction is initiated by the activation of the alkene. With liquid acids, the alkene forms the corresponding ester. This reaction follows Markovnikov s rule, so that the acid is added to the most highly substituted carbon atom. With H2S04, mono- and di-alkyl sulfates are produced, and with HF alkyl fluorides are produced. Triflic acid (CF3S020H) behaves in the same way and forms alkyl triflates (24). These esters are stable at low temperatures and low acid/hydrocarbon ratios. With a large excess of acid, the esters may also be stabilized in the form of free carbenium ions and anions (Reaction (1)). [Pg.259]

Fraser and coworkers116 measured the relative acidities of 15 weakly acidic hydrocarbons in THF using 13C NMR spectroscopy. However, as the experiments were... [Pg.398]

Chloro-/V-(24iydroxycthyl)anilinc. 2975 2-Chloromethylthiophene, 1842 Chlorosulfuric acid, Hydrocarbons, 3997 Chlorosulfuric acid, Sulfuric acid, 3997 Chromic acid, 4229... [Pg.167]

Chlorosulfuric acid, Hydrocarbons, 3997 4-Hydroxy-3-nitrobenzenesulfonyl chloride, 2146... [Pg.395]

Reduction of esters by trichlorosilane in tetrahydrofuran in the presence of tert-butyl peroxide and under ultraviolet irradiation gave predominantly ethers from esters of primary alcohols, while esters of tertiary alcohols were cleaved to acids and hydrocarbons. Esters of secondary alcohols gave mixtures of ethers and acids/hydrocarbons in varying ratios. 1-Adamantyl trimethylacetate, for example, afforded 50-100% yields of mixtures containing 2-42% of 1-adamantyl neopentyl ether and 58-98% of adamantane and trimethylacetic acid [1033]. [Pg.150]

Aliphatic alcohols, acids, hydrocarbons Abiotic GC, GC-MS, GC-IRMS... [Pg.89]

Standard organolithium reagents such as butyllithium, ec-butyllithium or tert-butyllithium deprotonate rapidly, if not instantaneously, the relatively acidic hydrocarbons of the 1,4-diene, diaryhnethane, triarylmethane, fluorene, indene and cyclopentadiene families and all terminal acetylenes (1-alkynes) as well. Butyllithium alone is ineffective toward toluene but its coordination complex with A/ ,A/ ,iV, iV-tetramethylethylenediamine does produce benzyllithium in high yield when heated to 80 To introduce metal into less reactive hydrocarbons one has either to rely on neighboring group-assistance or to employ so-called superbases. [Pg.457]


See other pages where Acidic Hydrocarbons is mentioned: [Pg.215]    [Pg.431]    [Pg.2116]    [Pg.133]    [Pg.408]    [Pg.410]    [Pg.145]    [Pg.553]    [Pg.610]    [Pg.753]    [Pg.921]    [Pg.963]    [Pg.982]    [Pg.1035]    [Pg.1037]    [Pg.1041]    [Pg.1099]    [Pg.1647]    [Pg.8]    [Pg.308]    [Pg.316]    [Pg.317]    [Pg.276]    [Pg.105]    [Pg.30]    [Pg.412]    [Pg.67]    [Pg.112]    [Pg.102]    [Pg.104]    [Pg.40]   


SEARCH



Hydrocarbons acids

© 2024 chempedia.info