Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acid temperature control mixing

However, the laboratory data seem to indicate that a constant concentration in the reactor to maintain 63 percent sulfuric acid would be beneficial. Careful temperature control is also important. These two factors would suggest that a continuous well-mixed reactor is appropriate. There is a conflict. How can a well-defined residence time be maintained and simultaneously a constant concentration of sulfuric acid be maintained ... [Pg.52]

Hydroxyquinoline ( oxine ). The technique adopted in this preparation is based upon the fact that, in general, the reactants glycerol, amine, nitro compound and sulphuric acid can be mixed with temperature control, and then maintained at any convenient temperature below 120° without any appreciable chemical reaction taking place. A pre-mix of the amine, glycerol and sulphuric acid, maintained at a temperature which keeps it fluid (60-90°), is added in portions to a reaction vessel containiug the nitro compound and warmed with stirring to 140-170° at which temperature the Skraup reaction takes place. [Pg.830]

A typical flow diagram for pentaerythritol production is shown in Figure 2. The main concern in mixing is to avoid loss of temperature control in this exothermic reaction, which can lead to excessive by-product formation and/or reduced yields of pentaerythritol (55,58,59). The reaction time depends on the reaction temperature and may vary from about 0.5 to 4 h at final temperatures of about 65 and 35°C, respectively. The reactor product, neutralized with acetic or formic acid, is then stripped of excess formaldehyde and water to produce a highly concentrated solution of pentaerythritol reaction products. This is then cooled under carefully controlled crystallization conditions so that the crystals can be readily separated from the Hquors by subsequent filtration. [Pg.465]

The ore is ordinarily ground to pass through a ca 1.2-mm (14-mesh) screen, mixed with 8—10 wt % NaCl and other reactants that may be needed, and roasted under oxidising conditions in a multiple-hearth furnace or rotary kiln at 800—850°C for 1—2 h. Temperature control is critical because conversion of vanadium to vanadates slows markedly at ca 800°C, and the formation of Hquid phases at ca 850°C interferes with access of air to the mineral particles. During roasting, a reaction of sodium chloride with hydrous siUcates, which often are present in the ore feed, yields HCl gas. This is scmbbed from the roaster off-gas and neutralized for pollution control, or used in acid-leaching processes at the mill site. [Pg.392]

Brown et al. [494] developed a method for the production of hydrated niobium or tantalum pentoxide from fluoride-containing solutions. The essence of the method is that the fluorotantalic or oxyfluoroniobic acid solution is mixed in stages with aqueous ammonia at controlled pH, temperature, and precipitation time. The above conditions enable to produce tantalum or niobium hydroxides with a narrow particle size distribution. The precipitated hydroxides are calcinated at temperatures above 790°C, yielding tantalum oxide powder that is characterized by a pack density of approximately 3 g/cm3. Niobium oxide is obtained by thermal treatment of niobium hydroxide at temperatures above 650°C. The product obtained has a pack density of approximately 1.8 g/cm3. The specific surface area of tantalum oxide and niobium oxide is nominally about 3 or 2 m2/g, respectively. [Pg.297]

The experiments were performed in a CINC V-02 separator also known as the CS-50 (15). Two Verder VL 500 control peristaltic tube pumps equipped with a double pump head (3,2 x 1,6 x 8R) were used to feed the CCS. In case of the enzymatic reaction, the low mix bottom plate was applied. To operate the reactor at a desired temperature, it was equipped with a jacket which was coimected to a temperature controlled water bath with an accuracy of 0.01°C. The CCS was fed with pure heptane and pure water, both with a flow rate of 6 mL/min. Subsequently, the centrifuge was started (40 Hz, which corresponds to 2400 rpm) and the set-up was allowed to equilibrate for a period of 1 h. At this point, the heptane feed stream was replaced by the organic feed stream (oleic acid (0.6M) and 1-bntanol (0.9M) in heptane). After equilibration for 10 minutes, the reaction in the CCS was started by replacing the water stream with the aqueous feed stream (0.1 M phosphate buffer pH 5.6 containing 1 g/1 of the lipase form Rhizomucor miehei). Samples were taken at regular intervals and analysed by GC. [Pg.45]

Fig. 12.2 Diagram of a fully automated system for acquiring H/D exchange MS data starting with a stock solution of the nondeuterated protein. In this system [8], the liquid handler mixes a small amount of concentrated protein solution with a selected deuterated buffer and the mixture is incubated for a programmed period of time. The exchange reaction is conducted in a temperature-controlled chamber held at 25 °C. The mixture is then transferred to an acidic quench solution held at 1 °C. After quenching the exchange reaction, the entire sample is injected onto an LC-MS system... Fig. 12.2 Diagram of a fully automated system for acquiring H/D exchange MS data starting with a stock solution of the nondeuterated protein. In this system [8], the liquid handler mixes a small amount of concentrated protein solution with a selected deuterated buffer and the mixture is incubated for a programmed period of time. The exchange reaction is conducted in a temperature-controlled chamber held at 25 °C. The mixture is then transferred to an acidic quench solution held at 1 °C. After quenching the exchange reaction, the entire sample is injected onto an LC-MS system...
In the reactor portion of this process, the olefin stock is mixed with benzene (for cumene) or recycle lights (for tetramer). The resulting charge is pumped to the reaction chamber. The catalyst, solid phosphoric acid, is maintained in separate beds in the reactor. Suitable propane quench is provided between beds for temperature control purposes because the reaction is exothermic. [Pg.379]


See other pages where Acid temperature control mixing is mentioned: [Pg.52]    [Pg.64]    [Pg.249]    [Pg.155]    [Pg.622]    [Pg.439]    [Pg.98]    [Pg.163]    [Pg.260]    [Pg.133]    [Pg.223]    [Pg.1587]    [Pg.146]    [Pg.330]    [Pg.54]    [Pg.91]    [Pg.93]    [Pg.409]    [Pg.142]    [Pg.143]    [Pg.227]    [Pg.1653]    [Pg.34]    [Pg.1587]    [Pg.941]    [Pg.114]    [Pg.193]    [Pg.205]    [Pg.210]    [Pg.238]    [Pg.510]    [Pg.164]    [Pg.1346]    [Pg.175]    [Pg.510]   
See also in sourсe #XX -- [ Pg.272 ]

See also in sourсe #XX -- [ Pg.272 ]

See also in sourсe #XX -- [ Pg.272 ]




SEARCH



Acid temperature

Acid temperature control

Acid temperature control mixing heat

Acidity Control

Acidity controlling

Acids control

Mixing control

Mixing temperatures

Temperature control

Temperature control controllers

Temperature controller

Temperature-controlled

© 2024 chempedia.info