Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetylene, properties

Normally absent or in trace amounts in crude oil, products of conversion processes such as diolefins, acetylenes, etc., are encountered. Table 1.4 gives the physical properties of some of them. Noteworthy is 1-3 butadienerC ( l)... [Pg.8]

Kumar A and Meath W J 1992 Dipole oscillator strength properties and dispersion energies for acetylene and benzene Mol. Phys. 75 311... [Pg.211]

In addition to inorganic radicals, which profoundly modify the properties of a paraflSn hydrocarbon residue, there is a whole series of organic groupings which are distinguished by exceptional reactivity, for example, the ethylene and acetylene groupings, and the phenyl and naphthyl radicals. Thus the characterisation of unsaturated hydrocarbons and their derivatives, e.g., the aromatic compounds, becomes possible. [Pg.1026]

The most distinctive aspect of the chemistry of acetylene and terminal alkynes is their acidity As a class compounds of the type RC=CH are the most acidic of all hydro carbons The structural reasons for this property as well as the ways m which it is used to advantage m chemical synthesis are important elements of this chapter... [Pg.363]

The property that most separates acetylene from ethane and ethylene is its acidity too can be explained on the basis of the greater electronegativity of sp hybridized... [Pg.367]

We have already discussed one important chemical property of alkynes the acidity of acetylene and terminal alkynes In the remaining sections of this chapter several other reactions of alkynes will be explored Most of them will be similar to reactions of alkenes Like alkenes alkynes undergo addition reactions We 11 begin with a reaction familiar to us from our study of alkenes namely catalytic hydrogenation... [Pg.374]

Butynediol. Butynediol, 2-butyne-l,4-diol, [110-65-6] was first synthesized in 1906 by reaction of acetylene bis(magnesium bromide) with paraformaldehyde (43). It is available commercially as a crystalline soHd or a 35% aqueous solution manufactured by ethynylation of formaldehyde. Physical properties are Hsted in Table 2. [Pg.105]

Table 5 Hsts the principal commercially available acetylenic alcohols and glycols Tables 6 and 7 Hst the physical properties of acetylenic alcohols and glycols, respectively. Table 5 Hsts the principal commercially available acetylenic alcohols and glycols Tables 6 and 7 Hst the physical properties of acetylenic alcohols and glycols, respectively.
Vlayl fluoride [75-02-5] (VF) (fluoroethene) is a colorless gas at ambient conditions. It was first prepared by reaction of l,l-difluoro-2-bromoethane [359-07-9] with ziac (1). Most approaches to vinyl fluoride synthesis have employed reactions of acetylene [74-86-2] with hydrogen fluoride (HF) either directly (2—5) or utilizing catalysts (3,6—10). Other routes have iavolved ethylene [74-85-1] and HF (11), pyrolysis of 1,1-difluoroethane [624-72-6] (12,13) and fluorochloroethanes (14—18), reaction of 1,1-difluoroethane with acetylene (19,20), and halogen exchange of vinyl chloride [75-01-4] with HF (21—23). Physical properties of vinyl fluoride are given ia Table 1. [Pg.379]

Poly(l,3,4-oxadia2ole-2,5-diyl-vinylene) and poly(l,3,4-oxadia2ole-2,5-diyl-ethynylene) were synthesi2ed by polycondensation of fumaramide or acetylene-dicarboxamide with hydra2ine sulfate in PPA to study the effect of the two repeating units on polymer electronic and thermal properties (55). [Pg.534]

Polyphenylquinoxalines (PPQ) are easier to make than the polyquinoxalines and offer superior solubiHty, processibiHty, and thermooxidative stabiHty (65). The PPQs exhibit excellent high temperature adhesive, composite, and film properties. However, to increase the use temperature of PPQs, acetylene... [Pg.535]

Many of the reactions in which acetylene participates, as well as many properties of acetylene, can be understood in terms of the stmcture and bonding of acetylene. Acetylene is a linear molecule in which two of the atomic orbitals on the carbon are sp hybridized and two are involved in 7T bonds. The lengths and energies of the C—H O bonds and C=C<7 + 27t bonds are as follows ... [Pg.373]

Liquid and Solid Acetylene. Both the Hquid and the soHd have the properties of a high explosive when initiated by detonators or by detonation of adjoining gaseous acetylene (85). At temperatures near the freezing point neither form is easily made to explode by heat, impact, or friction, but initiation becomes easier as the temperature of the Hquid is raised. Violent explosions result from exposure to mild thermal sources at temperatures approaching room temperature. [Pg.377]

Because it was not possible to explain the differences in the effectiveness of hydrogen as compared to other gases on the basis of differences in their physical properties, ie, thermal conductivity, diffusivity, or heat capacity differences, their chemical properties were explored. To differentiate between the hydrogen atoms in the C2H2 molecules and those injected as the quench, deuterium gas was used as the quench. The data showed that although 90% of the acetylene was recovered, over 99% of the acetylene molecules had exchanged atoms with the deuterium quench to form C2HD and... [Pg.383]

Much effort has been expended toward the improvement of the properties of polyacetylenes made by the direct polymerization of acetylene. Variation of the type of initiator systems (17—19), annealing or aging of the catalyst (20,21), and stretch orientation of the films (22,23) has resulted in increases in conductivity and improvement in the oxidative stabiHty of the material. The improvement in properties is likely the result of a polymer with fewer defects. [Pg.35]

Even with improvement in properties of polyacetylenes prepared from acetylene, the materials remained intractable. To avoid this problem, soluble precursor polymer methods for the production of polyacetylene have been developed. The most highly studied system utilizing this method, the Durham technique, is shown in equation 2. [Pg.35]

Copolymerizations of benzvalene with norhornene have been used to prepare block copolymers that are more stable and more soluble than the polybenzvalene (32). Upon conversion to (CH), some phase separation of nonconverted polynorhornene occurs. Other copolymerizations of acetylene with a variety of monomers and carrier polymers have been employed in the preparation of soluble polyacetylenes. Direct copolymeriza tion of acetylene with other monomers (33—39), and various techniques for grafting polyacetylene side chains onto solubilized carrier polymers (40—43), have been studied. In most cases, the resulting copolymers exhibit poorer electrical properties as solubiUty increases. [Pg.36]

The increasing ranges of pressure and temperature of interest to technology for an ever-increasing number of substances would necessitate additional tables in this subsection as well as in the subsec tion Thermodynamic Properties. Space restrictions preclude this. Hence, in the present revision, an attempt was made to update the fluid-compressibihty tables for selected fluids and to omit tables for other fluids. The reader is thus referred to the fourth edition for tables on miscellaneous gases at 0°C, acetylene, ammonia, ethane, ethylene, hydrogen-nitrogen mixtures, and methyl chloride. The reader is also... [Pg.184]

Since impurities can affect both the polymerisation reaction and the properties of the finished product (particularly electrical insulation properties and resistance to heat aging) they must be rigorously removed. In particular, carbon monoxide, acetylene, oxygen and moisture must be at a very low level. A number of patents require that the carbon monoxide content be less than 0.02%. [Pg.207]

One class of materials with some inherent PSA properties includes polyvinyl-ethers. Vinyl ether monomers are industrially derived from the reaction of acetylene with alcohols [117]. The most common alcohols used are methanol, ethanol or isobutanol. A generic structure of the vinyl ether is shown below ... [Pg.509]


See other pages where Acetylene, properties is mentioned: [Pg.30]    [Pg.30]    [Pg.131]    [Pg.135]    [Pg.174]    [Pg.242]    [Pg.48]    [Pg.112]    [Pg.112]    [Pg.116]    [Pg.536]    [Pg.537]    [Pg.373]    [Pg.378]    [Pg.380]    [Pg.382]    [Pg.394]    [Pg.402]    [Pg.535]    [Pg.547]    [Pg.547]    [Pg.53]    [Pg.102]    [Pg.509]    [Pg.2301]    [Pg.66]    [Pg.9]    [Pg.274]   
See also in sourсe #XX -- [ Pg.359 ]




SEARCH



Acetylene chemical properties

Acetylene complexes properties

Acetylene exposion properties

Acetylene physical properties

Acetylene properties and reactions

Acetylene thermodynamic properties

Acetylene, bond properties

Acetylenic derivatives of pyrazoles, synthesis and properties

Acetylenic esters properties

Acetylenic ethers properties

Acetylenic properties

And properties of acetylenic derivatives

And properties of acetylenic derivatives pyrazoles

Chemical Properties of Acetylenes

Poly acetylene electrical properties

Properties of Acetylene Complexes

Pyrazoles, synthesis and properties acetylenic derivatives

Synthesis and properties of acetylenic derivatives

© 2024 chempedia.info