Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetylene lithium complexes

In the first method a secondary acetylenic bromide is warmed in THF with an equivalent amount of copper(I) cyanide. We found that a small amount of anhydrous lithium bromide is necessary to effect solubilization of the copper cyanide. Primary acetylenic bromides, RCECCH Br, under these conditions afford mainly the acetylenic nitriles, RCsCCHjCsN (see Chapter VIII). The aqueous procedure for the allenic nitriles is more attractive, in our opinion, because only a catalytic amount of copper cyanide is required the reaction of the acetylenic bromide with the KClV.CuCN complex is faster than the reaction with KCN. Excellent yields of allenic nitriles can be obtained if the potassium cyanide is added at a moderate rate during the reaction. Excess of KCN has to be avoided, as it causes resinifi-cation of the allenic nitrile. In the case of propargyl bromide 1,1-substitution may also occur, but the propargyl cyanide immediately isomerizes under the influence of the potassium cyanide. [Pg.155]

Lithium Acetylide. Lithium acetyhde—ethylenediamine complex [50475-76-8], LiCM7H -112X01120112X112, is obtained as colodess-to-light-tan, free-flowing crystals from the reaction of /V-lithoethylenediamine and acetylene in an appropriate solvent (131). The complex decomposes slowly above 40°O to lithium carbide and ethylenediamine. Lithium acetyhde—ethylenediamine is very soluble in primary amines, ethylenediamine, and dimethyl sulfoxide. It is slightly soluble in ether, THF, and secondary and tertiary amines, and is insoluble in hydrocarbons. [Pg.229]

An ethynylation reagent obtained by decomposition of lithium aluminum hydride in ethers saturated with acetylene gives a satisfactory yield of (64), Best results are obtained with the lithium acetylide-ethylene diamine complex in dioxane-ethylenediamine-dimethylacetamide. Ethynylation of (63) with lithium acetylide in pure ethylenediamine gives (64) in 95% yield. [Pg.67]

We see from these examples that many of the carbon nucleophiles we encountered in Chapter 10 are also nucleophiles toward aldehydes and ketones (cf. Reactions 10-104-10-108 and 10-110). As we saw in Chapter 10, the initial products in many of these cases can be converted by relatively simple procedures (hydrolysis, reduction, decarboxylation, etc.) to various other products. In the reaction with terminal acetylenes, sodium acetylides are the most common reagents (when they are used, the reaction is often called the Nef reaction), but lithium, magnesium, and other metallic acetylides have also been used. A particularly convenient reagent is lithium acetylide-ethylenediamine complex, a stable, free-flowing powder that is commercially available. Alternatively, the substrate may be treated with the alkyne itself in the presence of a base, so that the acetylide is generated in situ. This procedure is called the Favorskii reaction, not to be confused with the Favorskii rearrangement (18-7). ... [Pg.1225]

It would be ideal if the asymmetric addition could be done without a protecting group for ketone 36 and if the required amount of acetylene 37 would be closer to 1 equiv. Uthium acetylide is too basic for using the non-protected ketone 36, we need to reduce the nucleophile s basicity to accommodate the acidity of aniline protons in 36. At the same time, we started to understand the mechanism of lithium acetylide addition. As we will discuss in detail later, formation of the cubic dimer of the 1 1 complex of lithium cyclopropylacetylide and lithium alkoxide of the chiral modifier3 was the reason for the high enantiomeric excess. However, due to the nature of the stable and rigid dimeric complex, 2 equiv of lithium acetylide and 2 equiv of the lithium salt of chiral modifier were required for the high enantiomeric excess. Therefore, our requirements for a suitable metal were to provide (i) suitable nucleophilicity (ii) weaker basicity, which would be... [Pg.29]

The structure of the major aggregate was identified by labeling studies. Since the major set has two equal intensity 6Li signals, these signals could be assigned as a 1 1 complex 68 of lithium acetylide and lithium alkoxide or a dimer (such as 69) of the 1 1 complex 68 shown in Figure 1.9. Both structures have two different Li species. In order to discriminate between 68 and 69, a terminal acetylene carbon of 37 was labeled with 13C. In the case of 68, both lithium signals will be a doublet... [Pg.37]

If the alkenes and acetylenes that are subjected to the reaction mediated by 1 have a leaving group at an appropriate position, as already described in Eq. 9.16, the resulting titanacycles undergo an elimination (path A) as shown in Eq. 9.58 [36], As the resulting vinyltitaniums can be trapped by electrophiles such as aldehydes, this reaction can be viewed as an alternative to stoichiometric metallo-ene reactions via allylic lithium, magnesium, or zinc complexes (path B). Preparations of optically active N-heterocycles [103], which enabled the synthesis of (—)-a-kainic acid (Eq. 9.59) [104,105], of cross-conjugated trienes useful for the diene-transmissive Diels—Alder reaction [106], and of exocyclic bis(allene)s and cyclobutene derivatives [107] have all been reported based on this method. [Pg.346]

The modification of lithium aluminum hydride with chiral auxiliary reagents has resulted in several highly effective reagents, particularly for the reduction of aryl alkyl ketones and a,0-acetylenic ketones. Applications of several of these reagents to key reduction steps in more complex syntheses have been highly successful. Chiral tricoordinate aluminum reagents have given lower enantiomeric excesses of alcohols. [Pg.296]

By cobalt-lithium exchange, the group of Sekiguchi and coworkers generated several dilithium salts of variously substituted cyclobutadiene dianions . By the reaction of the functionalized acetylenes (e.g. compound 137) with CpCo(CO)2 (136), the corresponding cobalt sandwich complexes, related to compound 138, were obtained (Scheme 50). These can be interconverted into the dilithium salts of the accordant cyclobutadiene dianions (e.g. dilithium compound 139) by reaction with metallic lithium in THF. Bicyclic as well as tricyclic (e.g. dilithium compound 141, starting from cobalt complex 140) silyl substituted systems were generated (Scheme 51) . ... [Pg.969]

If the pKa of the corresponding acid R1 - H from the stabilized carbanion is smaller than 35, the migration of R1 fails in (dichloromethyl)borate complexes. Failure to convert pinanediol [(phenylthio)methyl]boronate to an a-chloro boronic ester has been reported15. Reaction of (dichloromethyl)lithium with an acetylenic boronic ester resulted in loss of the acetylenic group to form the (dichloromethyl)boronate, and various attempts to react (dichloromethyl)boronic esters with lithium enolates have failed17. Dissociation of the carbanion is suspected as the cause, but in most cases the products have not been rigorously identified. [Pg.1080]

Alkali metal alkyls, particularly n-butyl lithium, are the most frequently used reagents to form metallated intermediates.246 247 In certain cases (di- and triphenyl-methane, acetylene and 1-alkynes, cyclopentadiene) alkali metals can be directly applied. Grignard reagents are used to form magnesium acetylides and cyclopenta-dienyl complexes.248 Organolithium compounds with a bulky alkoxide, most notably M-BuLi-ferf-BuOK in THF/hexane mixture, known as the Lochmann-Schlosser reagent or LICKOR superbase, are more active and versatile reagents.249-252... [Pg.250]

Commercial Lithium Acetylide-Ethylenediamine258 Lithium acetylide-ethylenediamine complex (122 g) is added rapidly with stirring under acetylene to a suspension of 13/ -ethyl-3-methoxygona-2,5(10)-dien-17-one (186 g) in dimethylacetamide (6.1 liters). After stirring for 2 hr, the mixture is cooled to 10°, ice water (12 liters) is added, and the mixture extracted with benzene. The crude product is triturated with ice cold methanol to afford, after filtration and drying, 13/2-ethyl-17a-ethynyl-3-methoxygona-2,5(10)-dien-17/ -ol (157 g) mp 130-136°. The mother liquors yield a second crop (10 g) mp 130-136°. [Pg.77]


See other pages where Acetylene lithium complexes is mentioned: [Pg.235]    [Pg.415]    [Pg.426]    [Pg.409]    [Pg.415]    [Pg.8]    [Pg.397]    [Pg.138]    [Pg.200]    [Pg.29]    [Pg.527]    [Pg.561]    [Pg.163]    [Pg.122]    [Pg.56]    [Pg.332]    [Pg.325]    [Pg.326]    [Pg.45]    [Pg.325]    [Pg.326]    [Pg.234]    [Pg.352]    [Pg.815]    [Pg.92]    [Pg.14]    [Pg.48]    [Pg.79]    [Pg.11]    [Pg.108]    [Pg.442]    [Pg.481]    [Pg.948]    [Pg.77]    [Pg.85]   
See also in sourсe #XX -- [ Pg.234 , Pg.235 , Pg.236 , Pg.237 , Pg.238 , Pg.255 , Pg.256 , Pg.258 , Pg.259 , Pg.260 , Pg.261 , Pg.352 ]




SEARCH



Acetylene complexes

Acetylenic complexes

Lithium complexes

© 2024 chempedia.info