Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetic acid, addition compound

Most compounds in the study of Mallet et al. [102] respond similarly to the addition of acetic formic acid, although the effect is compound dependent. In negative-ion mode (Figure 6.5), most compounds are ion suppressed by formic and acetic acid additives. Anunoiuum hydroxide results in (significant) response enhancement for some compounds, e.g, raffinose, while the response of other compounds, e.g., malic acid and etidronic acid, is strongly suppressed. [Pg.163]

Pyrolysis of cellulose acetate has been applied for analytical purposes of the fibers [44], structural elucidation [45], study of thermal stability [46], etc. The main pyrolysis product of cellulose acetate is acetic acid. Several compounds typical in cellulose pyrolysis such as 5-hydroxymethyl-2-furancarboxaldehyde can be seen as its ester with acetic acid. Also, some compounds tentatively identified as dihydroxydioxanes and dihydroxydioxolanes in cellulose pyrolysate are found as acetic acid esters in the pyrolysate of cellulose acetate. Depending on the degree of substitution (D.S.), for D.S < 3, free -OH groups are still present in cellulose. This allows the formation of compounds typical for cellulose pyrolysate in addition to the compounds resulting from... [Pg.258]

The first example of a benzodiazepine, the 2,4-dimethyl derivative (1, R = R" = Me, R = H) was prepared in 1907 by Thiele2 by condensation of o-phenylenediamine with acetylacetone in ethanol-acetic acid. Addition of hydrochloric acid precipitated the purple hydrochloride.2 The commonest method of preparation remains the reaction of o-phenylenediamine with /3-dicarbonyl compounds. [Pg.28]

Basic compounds, such as primary and secondary amines, and acidic compounds, such as acids or phenols, have a tendency to show a tailing of peaks. This tailing can be efficiently suppressed by adding a basic (DEA, TEA) or acidic (TEA, acetic acid) additive (0.1-0.5%) to the eluent. Daicel stationary phases are available as 5, 10, and 20 im materials. The 20 im particle size is most often used for preparative separations (see Section 2.6.6). [Pg.442]

Aminoazobenzene is a very weak base, and consequently it will not form salts with weak organic acids, such as acetic acid, although it will do so with the strong mineral acids, such as hydrochloric acid. Aminoazobenzene is a yellowish-brown compound, whilst the hydrochloride is steel blue. The colour of the latter is presumably due to the addition of the proton to the phenyl-N-atom, the cation thus having benzenoid and quinonoid forms ... [Pg.208]

If the substance is found to be far too soluble in one solvent and much too insoluble in another solvent to allow of satisfactory recrystallisation, mixed solvents or solvent pairs may frequently be used with excellent results. The two solvents must, of course, be completely miscible. Recrystallisation from mixed solvents is carried out near the boiling point of the solvent. The compound is dissolved in the solvent in which it is very soluble, and the hot solvent, in which the substance is only sparingly soluble, is added cautiously until a slight turbidity is produced. The turbidity is then just cleared by the addition of a small quantity of the first solvent and the mixture is allowed to cool to room temperature crystals will separate. Pairs of liquids which may be used include alcohol and water alcohol and benzene benzene and petroleum ether acetone and petroleum ether glacial acetic acid and water. [Pg.125]

Other Reactions of Phospholipids. The unsaturated fatty acid groups in soybean lecithin can be halogenated. Acetic anhydride combined with the amino group of phosphatidylethanolamine forms acetylated compounds. PhosphoHpids form addition compounds with salts of heavy metals. Phosphatidylethanolamine and phosphatidjhnositol have affinities for calcium and magnesium ions that are related to interaction with their polar groups. [Pg.99]

Problems of removal of mercury from aqueous effluents are more comphcated in plants that manufacture a variety of inorganic and organic mercury compounds it is generally best to separate the effluent streams of inorganic and organic mercurials. When phenyhnercuric acetate is precipitated from its solution in acetic acid by addition of water, the filtrate is collected and reused for the next precipitation. This type of recycling is necessary not only for economic reasons but also to minimise recovery operations. [Pg.117]

The advent of a large international trade in methanol as a chemical feedstock has prompted additional purchase specifications, depending on the end user. Chlorides, which would be potential contaminants from seawater during ocean transport, are common downstream catalyst poisons likely to be excluded. Limitations on iron and sulfur can similarly be expected. Some users are sensitive to specific by-products for a variety of reasons. Eor example, alkaline compounds neutralize MTBE catalysts, and ethanol causes objectionable propionic acid formation in the carbonylation of methanol to acetic acid. Very high purity methanol is available from reagent vendors for small-scale electronic and pharmaceutical appHcations. [Pg.282]

In addition to the conventional mixed acids commonly used to produce DNT, a mixture of NO2 and H2SO4 (8), a mixture of NO2 and oxygen (9), and just HNO (10) can also be used. TerephthaUc acid and certain substituted aromatics are more amenable to nitrations using HNO, as compared to those using mixed acids. For compounds that are easily nitratable, acetic acid and acetic anhydride are sometimes added to nitric acid (qv). Acetyl nitrate, which is a nitrating agent, is produced as an intermediate as follows ... [Pg.33]

After epoxidation a distillation is performed to remove the propylene, propylene oxide, and a portion of the TBHP and TBA overhead. The bottoms of the distillation contains TBA, TBHP, some impurities such as formic and acetic acid, and the catalyst residue. Concentration of this catalyst residue for recycle or disposal is accompHshed by evaporation of the majority of the TBA and other organics (141,143,144), addition of various compounds to yield a metal precipitate that is filtered from the organics (145—148), or Hquid extraction with water (149). Low (<500 ppm) levels of soluble catalyst can be removed by adsorption on soHd magnesium siUcate (150). The recovered catalyst can be treated for recycle to the epoxidation reaction (151). [Pg.139]

Addition compounds form with those organics that contain a donor atom, eg, ketonic oxygen, nitrogen, and sulfur. Thus, adducts form with amides, amines, and A/-heterocycles, as well as acid chlorides and ethers. Addition compounds also form with a number of inorganic compounds, eg, POCl (6,120). In many cases, the addition compounds are dimeric, eg, with ethyl acetate, in titanium tetrachloride-rich systems. By using ammonia, a series of amidodichlorides, Ti(NH2) Cl4, is formed (133). [Pg.131]

One development involves the use of vitamin B 2 to cataly2e chemical, in addition to biochemical processes. Vitamin B 2 derivatives and B 2 model compounds (41,42) cataly2e the electrochemical reduction of alkyl haUdes and formation of C—C bonds (43,44), as well as the 2inc—acetic acid-promoted reduction of nitriles (45), alpha, beta-unsaturated nitriles (46), alpha, beta-unsaturated carbonyl derivatives and esters (47,48), and olefins (49). It is assumed that these reactions proceed through intermediates containing a Co—C bond which is then reductively cleaved. [Pg.114]

Addition of chlorine or bromine in the presence of water can yield compounds containing haUde and hydroxyl on adjacent carbon atoms (haloalcohols or halohydrins). The same products can be obtained in the presence of methanol (13) or acetic acid (14). As expected from the halonium ion intermediate, the addition is anti. As expected from Markovnikov s rule, the positive halogen goes to the same carbon that the hydrogen of a protic reagent would. [Pg.363]


See other pages where Acetic acid, addition compound is mentioned: [Pg.71]    [Pg.313]    [Pg.235]    [Pg.3]    [Pg.1211]    [Pg.243]    [Pg.777]    [Pg.2817]    [Pg.63]    [Pg.137]    [Pg.150]    [Pg.73]    [Pg.211]    [Pg.32]    [Pg.510]    [Pg.626]    [Pg.976]    [Pg.42]    [Pg.159]    [Pg.268]    [Pg.573]    [Pg.217]    [Pg.230]    [Pg.420]    [Pg.424]    [Pg.55]    [Pg.102]    [Pg.198]    [Pg.114]    [Pg.457]    [Pg.113]    [Pg.152]    [Pg.331]    [Pg.61]    [Pg.86]    [Pg.171]   
See also in sourсe #XX -- [ Pg.42 , Pg.43 ]




SEARCH



Acetates addition

Additions acetal

© 2024 chempedia.info