Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acceptor pseudo

All azoaromaties, be they of the azobenzene, aminoazpbenzene, or donor/acceptor pseudo-stUbene type, experience considerable spectral changes on protonation or complexation. Orthp metallation has the same effect. Usually the n— n band is red-shifted, possibly due to the localized charge at the N-atom. By the same token, the (n,K ) state is shifted to higher energies. Minor band shifts and intensity changes mdicate double protonation of azobenzene. [Pg.28]

Pseudo-stilbenes may emit fluorescence that is, contrary to true stilbenes, generally weak at room temperature and often weak even at low temperatures. Protonated azobenzene-type molecules and many protonated azo dye molecules emit strong fluorescence in sulfuric acid at 77 K with quantum yields of about 0.1. Inclusion of azobenzene in the channels of AIPO4-5 crystals provides complexation of the n-electrons and space confinement. This leads to emission by protonated azobenzene at room temperature. For their cyclopalladated azobenzenes, Ghedini et al. " report quantum yields of ca. 1T0 and lifetimes of ca. 1 ns. In contrast, donor/acceptor pseudo-stilbenes, if emitting at low temperatures or when adsorbed to surfaces, are weak emitters. In textile chemistry, it has long been known that azo dyes adsorbed to fibers may show fluorescence. ... [Pg.28]

Stimulated by extensive research activities on donor/acceptor substituted stilbenes, Mullen and Klarner have reported a donor/acceptor substituted poly(4,4 -biphenyl-diylvinylene) derivative (85) in which the NR2 donor and CN acceptor substituents are located on the vinylene unit [111]. The synthesis is based on a C-C-coupling reaction of in situ generated carbanion functions with a (pseudo)cation function, followed by a subsequent elimination of MeSH with formation of the olefinic double bond. [Pg.204]

In PAMPA measurements each well is usually a one-point-in-time (single-timepoint) sample. By contrast, in the conventional multitimepoint Caco-2 assay, the acceptor solution is frequently replaced with fresh buffer solution so that the solution in contact with the membrane contains no more than a few percent of the total sample concentration at any time. This condition can be called a physically maintained sink. Under pseudo-steady state (when a practically linear solute concentration gradient is established in the membrane phase see Chapter 2), lipophilic molecules will distribute into the cell monolayer in accordance with the effective membrane-buffer partition coefficient, even when the acceptor solution contains nearly zero sample concentration (due to the physical sink). If the physical sink is maintained indefinitely, then eventually, all of the sample will be depleted from both the donor and membrane compartments, as the flux approaches zero (Chapter 2). In conventional Caco-2 data analysis, a very simple equation [Eq. (7.10) or (7.11)] is used to calculate the permeability coefficient. But when combinatorial (i.e., lipophilic) compounds are screened, this equation is often invalid, since a considerable portion of the molecules partitions into the membrane phase during the multitimepoint measurements. [Pg.138]

The length of the coordinative bond (2.86 A) corresponds to a normal Sb-Sb single bond. The coordination geometries of the donor or acceptor antimony atoms are distorted tetrahedral for the former and pseudo trigonal bipyramidal for the latter with the iodine atoms in axial (I-Sb-I 169.71°) and the lone pair, the Me3Sb and the methyl group in equatorial positions. [Pg.97]

Fig. 33. Comparisons of the pseudo-solubility data of Figs. 31 and 29 with model calculations assuming various values of parameter A DH, the binding energy of a positive donor D + and H into DH, AE2, the binding energy of 2H° into H2, and eA, the position of the hydrogen acceptor level relative to midgap. Plots (a) and (b) correspond respectively to the values 1.8 and 1.4 eV for A E2- In each of these, curves are shown for four combinations of the other parameters full curves, AEDH = 0.435 eV, eA = 0 dashed curves, AEDH = 0.835 eV, ea = 0 dotted curves AEDH = 0.435 eV, eA = 0.4eV dot-dash curves, A DH = 0.835 eV, eA = 0.4 eV. The chemical potential fi is constant on each curve and has been chosen to make the model curve pass through one of the experimental points of donor doping near 1017 cm-3, as shown. The solid circles are experimental points for arsenic obtained from Fig. 29 as described in the text. The other points are extrapolations of the phosphorus curves of Fig. 31 to zero depth, as described for Fig. 32, with open circles for the newer data and crosses for the older. Fig. 33. Comparisons of the pseudo-solubility data of Figs. 31 and 29 with model calculations assuming various values of parameter A DH, the binding energy of a positive donor D + and H into DH, AE2, the binding energy of 2H° into H2, and eA, the position of the hydrogen acceptor level relative to midgap. Plots (a) and (b) correspond respectively to the values 1.8 and 1.4 eV for A E2- In each of these, curves are shown for four combinations of the other parameters full curves, AEDH = 0.435 eV, eA = 0 dashed curves, AEDH = 0.835 eV, ea = 0 dotted curves AEDH = 0.435 eV, eA = 0.4eV dot-dash curves, A DH = 0.835 eV, eA = 0.4 eV. The chemical potential fi is constant on each curve and has been chosen to make the model curve pass through one of the experimental points of donor doping near 1017 cm-3, as shown. The solid circles are experimental points for arsenic obtained from Fig. 29 as described in the text. The other points are extrapolations of the phosphorus curves of Fig. 31 to zero depth, as described for Fig. 32, with open circles for the newer data and crosses for the older.
Here, Ox is the oxidant that reacts with the reductant L, kr is the pseudo-first-order rate constant causing the rise in P, the excited product that is the intermediate in the type II reaction, and ks is the rate constant for deactivation of A [fcs = kf + kd in Eq. (1)]. P will fall in concentration with rate constant ksT as it transfers electronic excitation to the acceptor A to form the excited acceptor A. ... [Pg.78]

Each vertex of a buckyball cluster is attached by three H-bonds, and hence must have net donor (2D1A) or acceptor (1D2A) character that seems to preclude significant cooperativity. However, by suitably pairing each donor and acceptor monomer, one may produce connected dimers that are each of effective 3D3A pseudo-closed-CT character. Such cooperative dimer units may then be joined in proton-ordered fashion to form closed polyhedra that retain a high degree of cooperative stabilization. [Pg.650]

As described in Section 3.4.2, hyperconjugative donor-acceptor stabilizations favor conformers in which one of the rotor C—H bonds eclipses an adjacent double bond. (This is equivalent to an ethane-like staggered preference if the double bond is pictured in terms of two bent banana bonds. ) Hence, in the case of a perfectly localized Lewis structure I, the methyl group would be expected to adopt the preferred pseudo-cA conformation la (with in-plane C—H syn to A=C),... [Pg.694]

Several modifications have been proposed for the basic HNN-COSY experiment. For example, frequency separations between amino and aromatic 15N resonances are typically in the range 100-130 ppm and therefore much larger than between imino 15N donor and aromatic 15N acceptor resonances. As has been pointed out by Majumdar and coworkers [33], such 15N frequency separations are too large to be covered effectively by the non-selective 15N pulses of the homonuclear HNN-COSY. They therefore designed a pseudo-heteronuclear H(N)N-COSY experiment, where selective 15N pulses excite the amino and aromatic 15N resonances separately to yield excellent sensitivity [33]. An inconvenience of this experiment is that the resonances corresponding to the amino 15N nuclei are not detected, and a separate spin-echo difference experiment was used to quantify the h2/NN values. A slightly improved version of this pseudo-heteronuclear H(N)N-COSY [35] remedies this problem by the use of phase-coherent 15N pulses such that both amino and aromatic 15N resonances can be detected in a single experiment. [Pg.212]

When this probability is equal to 1 (uniform concentration), the reaction is of pseudo-first order. This is the case, for example, in photoinduced proton transfer in aqueous solutions from an excited acid M (=AH ) (see Section 4.5) M is always within the encounter distance with a water molecule acting as a proton acceptor, and thus proton transfer occurs effectively according to a unimolecular process. This is also the case of photoinduced electron transfer in aniline or its derivatives as solvents an excited acceptor is always in the vicinity of an aniline molecule as an electron donor. In both cases, the excited-state reaction occurs under non-diffusive conditions and is of pseudo-first order. [Pg.75]

The protein complex of T. elongatus consists of 12 subunits that contain 96 Chi a and 22 carotenoid molecules, 3 [4Fe4S] centres and 2 phylloquinone (vitamin K,) molecules (for molecular structures see Fig. 2). The cofactors of the ET chain are arranged in two branches as pairs of molecules related by a pseudo-C2 axis. After light excitation an electron is donated from the primary donor P700, a pair of chlorophylls, to monomeric chlorophyll a (acceptor A0), phylloquinone (A() and the 3 iron-sulfur centres (F , Oa and B). It has been controversially discussed in the literature whether both highly symmetric pigment branches are... [Pg.190]

The fact that n-type crystals thus grown are semi-insulating cannot be explained from the viewpoint of the phase diagram. The semi-insulating phase is regarded as a pseudo-intrinsic semiconductor, i.e. the concentration of free carriers is very low, due to the carrier compensation in some sense. Holmers et al. have concluded from their data that the concentration of free carrier called EL2 , Nq, is compensated for by that of acceptors derived from impurity carbon, Ta et carried out a similar investigation independently and reached the same conclusion. [Pg.249]


See other pages where Acceptor pseudo is mentioned: [Pg.29]    [Pg.29]    [Pg.2219]    [Pg.900]    [Pg.394]    [Pg.514]    [Pg.37]    [Pg.95]    [Pg.158]    [Pg.179]    [Pg.350]    [Pg.702]    [Pg.263]    [Pg.91]    [Pg.67]    [Pg.249]    [Pg.137]    [Pg.207]    [Pg.224]    [Pg.692]    [Pg.209]    [Pg.206]    [Pg.250]    [Pg.224]    [Pg.276]    [Pg.306]    [Pg.243]    [Pg.335]    [Pg.25]    [Pg.277]    [Pg.550]    [Pg.241]    [Pg.254]    [Pg.100]    [Pg.240]    [Pg.746]   
See also in sourсe #XX -- [ Pg.7 , Pg.16 , Pg.281 ]




SEARCH



© 2024 chempedia.info