Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

A-factor activation

Coked Evolved A factor Activation Energy Carbon per peak ... [Pg.389]

Fasting urinary calcium, magnesium, phosphate agree with the assumption of a factor actively inhibiting tubular transport ... [Pg.132]

A-factor activation energy AFC alkaline fuel cells... [Pg.17]

Figure A3.8.3 Quantum activation free energy curves calculated for the model A-H-A proton transfer reaction described 45. The frill line is for the classical limit of the proton transfer solute in isolation, while the other curves are for different fully quantized cases. The rigid curves were calculated by keeping the A-A distance fixed. An important feature here is the direct effect of the solvent activation process on both the solvated rigid and flexible solute curves. Another feature is the effect of a fluctuating A-A distance which both lowers the activation free energy and reduces the influence of the solvent. The latter feature enliances the rate by a factor of 20 over the rigid case. Figure A3.8.3 Quantum activation free energy curves calculated for the model A-H-A proton transfer reaction described 45. The frill line is for the classical limit of the proton transfer solute in isolation, while the other curves are for different fully quantized cases. The rigid curves were calculated by keeping the A-A distance fixed. An important feature here is the direct effect of the solvent activation process on both the solvated rigid and flexible solute curves. Another feature is the effect of a fluctuating A-A distance which both lowers the activation free energy and reduces the influence of the solvent. The latter feature enliances the rate by a factor of 20 over the rigid case.
Most reactions in cells are carried out by enzymes [1], In many instances the rates of enzyme-catalysed reactions are enhanced by a factor of a million. A significantly large fraction of all known enzymes are proteins which are made from twenty naturally occurring amino acids. The amino acids are linked by peptide bonds to fonn polypeptide chains. The primary sequence of a protein specifies the linear order in which the amino acids are linked. To carry out the catalytic activity the linear sequence has to fold to a well defined tliree-dimensional (3D) stmcture. In cells only a relatively small fraction of proteins require assistance from chaperones (helper proteins) [2]. Even in the complicated cellular environment most proteins fold spontaneously upon synthesis. The detennination of the 3D folded stmcture from the one-dimensional primary sequence is the most popular protein folding problem. [Pg.2642]

Some details of END using a multiconfigurational electronic wave function with a complete active space (CASMC) have been introduced in terms of an orthonormal basis and for a fixed nuclear framework [25], and were recently [26] discussed in some detail for a nonoithogonal basis with electron translation factors. [Pg.233]

In contrast to the situation in the absence of catalytically active Lewis acids, micelles of Cu(DS)2 induce rate enhancements up to a factor 1.8710 compared to the uncatalysed reaction in acetonitrile. These enzyme-like accelerations result from a very efficient complexation of the dienophile to the catalytically active copper ions, both species being concentrated at the micellar surface. Moreover, the higher affinity of 5.2 for Cu(DS)2 compared to SDS and CTAB (Psj = 96 versus 61 and 68, respectively) will diminish the inhibitory effect due to spatial separation of 5.1 and 5.2 as observed for SDS and CTAB. [Pg.154]

As the medium is still further diluted, until nitronium ion is not detectable, the second-order rate coefficient decreases by a factor of about 10 for each decrease of 10% in the concentration of the sulphuric acid (figs. 2.1, 2.3, 2.4). The active electrophile under these conditions is not molecular nitric acid because the variation in the rate is not similar to the correspondii chaise in the concentration of this species, determined by ultraviolet spectroscopy or measurements of the vapour pressure. " ... [Pg.21]

Table 9.7 contains recent data on the nitration of polychlorobenzenes in sulphuric acid. The data continue the development seen with the diehlorobenzenes. The introduetion of more substituents into these deactivated systems has a smaller effect than predicted. Whereas the -position in ehlorobenzene is four times less reactive than a position in benzene, the remaining position in pentachlorobenzene is about four times more reactive than a position in 1,3,4,5-tetraehlorobenzene. The chloro substituent thus activates nitration, a circumstance recalling the faet that o-chloronitrobenzene is more reactive than nitrobenzene. As can be seen from table 9.7, the additivity prineiple does not work very well with these compounds, underestimating the rate of reaction of pentachlorobenzene by a factor of nearly 250, though the failure is not so marked in the other cases, especially viewed in the circumstance of the wide range of reactivities covered. [Pg.189]

When unsubstituted, C-5 reacts with electrophilic reagents. Thus phosphorus pentachloride chlorinates the ring (36, 235). A hydroxy group in the 2-position activates the ring towards this reaction. 4-Methylthiazole does not react with bromine in chloroform (201, 236), whereas under the same conditions the 2-hydroxy analog reacts (55. 237-239. 557). Activation of C-5 works also for sulfonation (201. 236), nitration (201. 236. 237), Friede 1-Crafts reactions (201, 236, 237, 240-242), and acylation (243). However, iodination fails (201. 236). and the Gatterman or Reimer-Tieman reactions yield only small amounts of 4-methyl-5-carboxy-A-4-thiazoline-2-one. Recent kinetic investigations show that 2-thiazolones are nitrated via a free base mechanism. A 2-oxo substituent increases the rate of nitration at the 5-position by a factor of 9 log... [Pg.402]

The difference of a factor of 2 between these values comes about because the conditions were chosen to give the same rates. Since a given micelle-swollen polymer particle is active only half of the time, it must produce chains which are twice as long to polymerize at the same rate as the bulk case. Reducing Rj by 1/4 produces the following effects on the calculated quantities ... [Pg.402]

The contribution of this polar structure to the bonding lowers the energy of the transition state. This may be viewed as a lower activation energy for the addition step and thus a factor which promotes this particular reaction. The effect is clearly larger the greater the difference in the donor-acceptor properties of X and Y. The transition state for the successive addition of the same monomer (whether X or Y substituted) is structure [V] ... [Pg.437]

A solution which obeys Raoult s law over the full range of compositions is called an ideal solution (see Example 7.1). Equation (8.22) describes the relationship between activity and mole fraction for ideal solutions. In the case of nonideal solutions, the nonideality may be taken into account by introducing an activity coefficient as a factor of proportionality into Eq. (8.22). [Pg.511]

Nitrocellulose is among the least stable of common explosives. At 125°C it decomposes autocatalyticaHy to CO, CO2, H2O, N2, and NO, primarily as a result of hydrolysis of the ester and intermolecular oxidation of the anhydroglucose rings. At 50°C the rate of decomposition of purified nitrocellulose is about 4.5 x 10 %/h, increasing by a factor of about 3.5 for each 10°C rise in temperature. Many values have been reported for the activation energy, E, and Arrhenius frequency factor, Z, of nitrocellulose. Typical values foiE and Z are 205 kj/mol (49 kcal/mol) and 10.21, respectively. The addition of... [Pg.14]

Contraction of muscle follows an increase of Ca " in the muscle cell as a result of nerve stimulation. This initiates processes which cause the proteins myosin and actin to be drawn together making the cell shorter and thicker. The return of the Ca " to its storage site, the sarcoplasmic reticulum, by an active pump mechanism allows the contracted muscle to relax (27). Calcium ion, also a factor in the release of acetylcholine on stimulation of nerve cells, influences the permeabiUty of cell membranes activates enzymes, such as adenosine triphosphatase (ATPase), Hpase, and some proteolytic enzymes and facihtates intestinal absorption of vitamin B 2 [68-19-9] (28). [Pg.376]


See other pages where A-factor activation is mentioned: [Pg.592]    [Pg.340]    [Pg.17]    [Pg.289]    [Pg.291]    [Pg.291]    [Pg.20]    [Pg.262]    [Pg.96]    [Pg.256]    [Pg.163]    [Pg.592]    [Pg.340]    [Pg.17]    [Pg.289]    [Pg.291]    [Pg.291]    [Pg.20]    [Pg.262]    [Pg.96]    [Pg.256]    [Pg.163]    [Pg.509]    [Pg.707]    [Pg.598]    [Pg.599]    [Pg.860]    [Pg.2502]    [Pg.632]    [Pg.711]    [Pg.505]    [Pg.11]    [Pg.251]    [Pg.32]    [Pg.571]    [Pg.186]    [Pg.458]    [Pg.418]    [Pg.451]    [Pg.337]    [Pg.510]    [Pg.514]    [Pg.547]    [Pg.120]    [Pg.242]    [Pg.362]   


SEARCH



Activation energy and A factor

Active factors

Activity factor

© 2024 chempedia.info