Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

A-Diazo

The most important reaction of the diazonium salts is the condensation with phenols or aromatic amines to form the intensely coloured azo compounds. The phenol or amine is called the secondary component, and the process of coupling with a diazonium salt is the basis of manufacture of all the azo dyestuffs. The entering azo group goes into the p-position of the benzene ring if this is free, otherwise it takes up the o-position, e.g. diazotized aniline coupled with phenol gives benzeneazophenol. When only half a molecular proportion of nitrous acid is used in the diazotization of an aromatic amine a diazo-amino compound is formed. [Pg.133]

Reaction of the acid chloride with a cold solution of excess of diazomethane to yield a diazo ketone ... [Pg.903]

The conversion of a diazo ketone to an acid amide may be accomplished by treating a warm solution in dioxan with 10-28 per cent, aqueous ammonia solution containing a small amount of silver nitrate solution, after which the mixture is heated at 60°-70° for some time. Precautions should be taken (by use of a. safety glass shield) when heating mixtures containing ammoniacal silver nitrate. [Pg.903]

Bam ford-Stevens Reaction- initial conversion of a tosylhydrazone to a diazo intermediate... [Pg.107]

The Fuji CopiArt monochrome proofing system is based on the photogeneration of color from leuco dyes or diazo-coupling (35). CopiArt includes both positive and negative working systems (Fig. 6). For the positive working system, a diazo compound (6) reacts with a coupler (7) as shown. [Pg.39]

Negatwe P/ate Coatings. The bulk of negative plates have a diazo-based coating. This often comprises an A/-aryl- or alkyl aminobenzenedia zonium salt condensed with formaldehyde (66) or a methylol derivative (67) to form a low molecular weight polymer such as the following ... [Pg.44]

Azoic Dyes. These are used to produce cost-effective heavy yellow, orange, red, maroon, navy blue, brown, and black shades and are ptinted alongside other dye classes to extend the coloristic possibiUties for the designer. Two approaches are adopted. The common method ia the United States is to use both a naphthol derivative and a stabilized color base, usually in the form of a diazo imino compound in the same print paste. This mixture is soluble in dilute caustic soda and no coupling takes place at this stage. The dried prints are passed through steam at 100—105°C that contains acetic and/or formic acid vapor. As neutralization takes place on the print, the coupling occurs rapidly and the insoluble azoic dye is formed. [Pg.372]

Thermal conversion of diazirines to linear diazo compounds was postulated occasionally and proved by indirect methods. The existence of a diazo compound isomeric to diazirine (197) was proved spectroscopically on short thermolysis in DMSO (76JA6416). An intermediate diazoalkane was trapped by reaction with acetic acid, yielding the ester (198) (77JCS(P2)1214). [Pg.221]

A final method of /3-lactam 3,4-bond formation which has found fairly wide application is based on carbenlc insertion (78T1731 p. 1739). The carbenic centre can be generated by photolysis of a diazo compound as in the case of (158) (72JA1629, 79CC846) or from organometalllc precursors, for example (159) (71ACS1927). [Pg.258]

The Bamford-Stevens decomposition of tosylhydrazones by base has been applied to steroids, although not extensively. It has been demonstrated that the reaction proceeds via a diazo compound which undergoes rapid decomposition. The course of this decomposition depends upon the conditions in proton-donating solvents the reaction has the characteristics of a process involving carbonium ions, and olefins are formed, often accompanied by Wagner-Meerwein-type rearrangement. In aprotic solvents the diazo compound appears to give carbene intermediates which form olefins and insertion products ... [Pg.351]

Reaction of tosyl hydrazone 1 with a strong base initially leads to a diazo compound 3, which in some cases can be isolated ... [Pg.22]

Instead of a diazonium salt, a diazo compound is obtained from reaction of a primary aliphatic amine 8 that has an electron-withdrawing substituent at the a-carbon (e.g. Z = COOR, CN, CHO, COR) as well as an a-hydrogen ... [Pg.88]

An a-diazo ketone 1 can decompose to give a ketocarbene, which further reacts by migration of a group R to yield a ketene 2. Reaction of ketene 2 with water results in formation of a carboxylic acid 3. The Woljf re arrangement is one step of the Arndt-Eistert reaction. Decomposition of diazo ketone 1 can be accomplished thermally, photochemically or catalytically as catalyst amorphous silver oxide is commonly used ... [Pg.301]

The ketocarbene 4 that is generated by loss of Na from the a-diazo ketone, and that has an electron-sextet, rearranges to the more stable ketene 2 by a nucleophilic 1,2-shift of substituent R. The ketene thus formed corresponds to the isocyanate product of the related Curtius reaction. The ketene can further react with nucleophilic agents, that add to the C=0-double bond. For example by reaction with water a carboxylic acid 3 is formed, while from reaction with an alcohol R -OH an ester 5 is obtained directly. The reaction with ammonia or an amine R -NHa leads to formation of a carboxylic amide 6 or 7 ... [Pg.301]

With cyclic a-diazo ketones, e.g. a-diazo cyclohexanone 9, the rearrangement results in a ring contraction by one carbon " ... [Pg.302]

The strained bicyclic carbapenem framework of thienamycin is the host of three contiguous stereocenters and several heteroatoms (Scheme 1). Removal of the cysteamine side chain affixed to C-2 furnishes /J-keto ester 2 as a possible precursor. The intermolecular attack upon the keto function in 2 by a suitable thiol nucleophile could result in the formation of the natural product after dehydration of the initial tetrahedral adduct. In a most interesting and productive retrosynthetic maneuver, intermediate 2 could be traced in one step to a-diazo keto ester 4. It is important to recognize that diazo compounds, such as 4, are viable precursors to electron-deficient carbenes. In the synthetic direction, transition metal catalyzed decomposition of diazo keto ester 4 could conceivably furnish electron-deficient carbene 3 the intermediacy of 3 is expected to be brief, for it should readily insert into the proximal N-H bond to... [Pg.250]

The diazo function in compound 4 can be regarded as a latent carbene. Transition metal catalyzed decomposition of a diazo keto ester, such as 4, could conceivably lead to the formation of an electron-deficient carbene (see intermediate 3) which could then insert into the proximal N-H bond. If successful, this attractive transition metal induced ring closure would accomplish the formation of the targeted carbapenem bicyclic nucleus. Support for this idea came from a model study12 in which the Merck group found that rhodi-um(n) acetate is particularly well suited as a catalyst for the carbe-noid-mediated cyclization of a diazo azetidinone closely related to 4. Indeed, when a solution of intermediate 4 in either benzene or toluene is heated to 80 °C in the presence of a catalytic amount of rhodium(n) acetate (substrate catalyst, ca. 1000 1), the processes... [Pg.254]

Reactions between imines and a-diazo carboxylates afford aziridine-2-carboxylates [55]. An asymmetric version of this reaction using chiral nonracemic catalysts has been described [53, 56-58]. As an example, catalytic aziridination of inline 44 (Scheme 3.14) with ethyl diazoacetate in the presence of 10% catalyst generated... [Pg.79]

The BF3 Et20-catalyzed aziridination of compounds 47 (Scheme 3.15) with a diazo ester derived from (R)-pantolacetone gave aziridine-2-carboxylates 48 [59]. The reaction exhibited both high cis selectivity (>95 <5) and excellent diastereose-lectivity. Treatment of a-amino nitrile 49 (Scheme 3.16) with ethyl diazoacetate in the presence of 0.5 equivalent of SnCl4 afforded aziridines 50 and 51 in 39% yield in a ratio of 75 25 [60]. [Pg.80]

The diazotization of amino derivatives of six-membered heteroaromatic ring systems, particularly that of aminopyridines and aminopyridine oxides, was studied in detail by Kalatzis and coworkers. Diazotization of 3-aminopyridine and its derivatives is similar to that of aromatic amines because of the formation of rather stable diazonium ions. 2- and 4-aminopyridines were considered to resist diazotization or to form mainly the corresponding hydroxy compounds. However, Kalatzis (1967 a) showed that true diazotization of these compounds proceeds in a similar way to that of the aromatic amines in 0,5-4.0 m hydrochloric, sulfuric, or perchloric acid, by mixing the solutions with aqueous sodium nitrite at 0 °C. However, the rapidly formed diazonium ion is hydrolyzed very easily within a few minutes (hydroxy-de-diazonia-tion). The diazonium ion must be used immediately after formation, e. g., for a diazo coupling reaction, or must be stabilized as the diazoate by prompt neutralization (after 45 s) to pH 10-11 with sodium hydroxide-borax buffer. All isomeric aminopyridine-1-oxides can be diazotized in the usual way (Kalatzis and Mastrokalos, 1977). The diazotization of 5-aminopyrimidines results in a complex ring opening and conversion into other heterocyclic systems (see Nemeryuk et al., 1985). [Pg.20]

In the historical introduction to this book (Sec. 1.1) it was mentioned that the discoverer of diazo compounds, Peter Griess, realized quite early (1864 a) that these species could react with alkali hydroxides. Thirty years later Schraube and Schmidt (1894) found that the primary product from the addition of a hydroxide ion to a diazo compound can isomerize to form a secondary product. In this section we will discuss the equilibria of the first acid-base process of aromatic diazonium ions. In the following section additional acid-base reactions will be treated in connection with the isomerism of addition products of hydroxide ions to diazonium ions. [Pg.89]


See other pages where A-Diazo is mentioned: [Pg.905]    [Pg.531]    [Pg.425]    [Pg.429]    [Pg.430]    [Pg.444]    [Pg.122]    [Pg.126]    [Pg.126]    [Pg.127]    [Pg.193]    [Pg.598]    [Pg.818]    [Pg.272]    [Pg.275]    [Pg.282]    [Pg.151]    [Pg.301]    [Pg.506]    [Pg.256]    [Pg.8]    [Pg.35]    [Pg.114]    [Pg.193]    [Pg.347]    [Pg.347]    [Pg.348]   


SEARCH



A- diazo compounds

A-Diazo aldehydes

A-Diazo keto esters

A-Diazo ketoester

A-Diazo ketones, Wolff

A-Diazo ketones, rearrangement

A-Diazo-/-ketocarboxylic acid

A-Diazo-/-ketocarboxylic acid esters

A-Diazo-p-keto esters

A-diazo carbonyl compound

A-diazo ketone decomposition

Annulation of a-diazo-p-keto ester

Carboxylic acids a-diazo, reaction with ketones

Decomposition of a-diazo esters

Diazo compounds formation of a-chlorosulfides

Electrophilic and Nucleophilic Substitution at the C(a)-Atom of Diazo Compounds

Esters a-diazo

Esters, a-diazo C—H insertion reactions

Esters, a-diazo synthesis

Ethers (s. a. Alkoxy diazo compounds

FORMATION AND PHOTOCHEMICAL WOLFF REARRANGEMENT OF CYCLIC a-DIAZO

Inorganic Diazo Compounds and Metal Complexes with Dinitrogen as Ligand

Ketones a-diazo

Ketones, a-diazo Mannich reactions

Ketones, a-diazo cyclic

Ketones, a-diazo with preformed iminium salts

Ketones, diazo a-chlorination

Photolysis of a-Diazo Carbonyl Compounds

Photolysis of a-Diazo Carbonyl and Related Compounds

Reaction Replacement of a Diazo-Group by Iodine

Reactions of a-Diazo Ketones

Tosylhydrazones synthesis of a-diazo ketones

Wolff rearrangement of a-diazo ketones

© 2024 chempedia.info