Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

A- acetate esters

Emulsifier 472 a Acetic esters of fatty acid glycerides 98/86 FNP 52 p 12 -... [Pg.258]

Geissman and Waiss (i<3 )have effected the first stereospecific synthesis of retronecine (CXLIV in 1) by a series of reactions which is shown in Chart I. Ethyl A-carbethoxy-3-aminopropionate (LI) was added to diethyl fumarate and the product ring-closed to the pyrrolidone, LII, which on hydrolysis and reduction yielded the required 3-hydroxy-pyrrolidine-2-acetic acid lactone (LIII). Reaction of this lactone with ethyl bromoacetate gave the A-acetic ester, LIV which by ring closure... [Pg.272]

Clearly, the nex.t step will be to investigate the physicochemical effects, such as charge distribution and inductive and resonance effects, at the reaction center to obtain a deeper insight into the mechanisms of these biochemical reactions and the finer details of similar reactions. Here, it should be emphasized that biochemical reactions arc ruled and driven basically by the same effects as organic reactions. Figure 10.3-22 compares the Claisen condensation of acetic esters to acctoacctic esters with the analogous biochemical reaction in the human body. [Pg.561]

In the present preparation, ethyl acetoacetate is treated with sufficient nitrous acid to convert half into the a-nitroso (or a-oximino) ester, which is reduced by zinc and acetic acid to the a-amino ester (I). The latter then condenses with... [Pg.293]

This preparation illustrates the Reformatsky reaction, which consists in the interaction of a carbonyl compound, an a-halogen ester (e.g., ethyl bromo-acetate) and zinc In the presence of ether or benzene, followed by hydrolysis. [Pg.874]

Diphenylketene (253) reacts with allyl carbonate or acetate to give the a-allylated ester 255 at 0 °C in DMF, The reaction proceeds via the intermediate 254 formed by the insertion of the C = C bond of the ketene into 7r-allylpalla-dium, followed by reductive elimination. Depending on the reaction conditions, the decarbonylation and elimination of h-hydrogen take place in benzene at 25 °C to afford the conjugated diene 256(155]. [Pg.324]

Thiazole carboxylic acid hydrazides were prepared in a similar way (444, 445). Thus by refluxing thioacetamide or thiobenzamide with y-bromoaceto acetic ester arylhydrazones (83) for several hours in alcohol the 4-carboxythiazole derivatives (84) listed in Table II-ll were obtained (Scheme 36) (656). This reaction is presumed to proceed via dehydration of the intermediate, thiazoline-S-oxide. [Pg.206]

The Claisen condensation of an aliphatic ester and a thiazolic ester gives after acidic hydrolysis a thiazolylketone (56). For example, the Claisen condensation of ethyl 4-methyl-5-thiazolecarboxylate with ethyl acetate followed by acid hydrolysis gives methyl 4-methyl-5-thiazolyl ketone in 16% yield. [Pg.536]

One approach called enzymatic resolution, involves treating a racemic mixture with an enzyme that catalyzes the reaction of only one of the enantiomers Some of the most commonly used ones are lipases and esterases enzymes that catalyze the hydrol ysis of esters In a typical procedure one enantiomer of the acetate ester of a racemic alcohol undergoes hydrolysis and the other is left unchanged when hydrolyzed m the presence of an esterase from hog liver... [Pg.312]

Figure 3 shows the production of acetaldehyde in the years 1969 through 1987 as well as an estimate of 1989—1995 production. The year 1969 was a peak year for acetaldehyde with a reported production of 748,000 t. Acetaldehyde production is linked with the demand for acetic acid, acetic anhydride, cellulose acetate, vinyl acetate resins, acetate esters, pentaerythritol, synthetic pyridine derivatives, terephthaHc acid, and peracetic acid. In 1976 acetic acid production represented 60% of the acetaldehyde demand. That demand has diminished as a result of the rising cost of ethylene as feedstock and methanol carbonylation as the preferred route to acetic acid (qv). [Pg.53]

Bromohydrins can be prepared direcdy from polyhydric alcohols using hydrobromic acid and acetic acid catalyst, followed by distillation of water and acetic acid (21). Reaction conditions must be carehiUy controlled to avoid production of simple acetate esters (22). The raw product is usually a mixture of the mono-, di-and tribromohydrins. [Pg.464]

First,/)-hydroxybenzoic acid (HBA) and 6-hydroxy-2-naphthoic acid (HNA) are acetylated to produce the low melting acetate esters which are molten at 200°C. In an inert gas, the two monomers are melted together at 200°C. The temperature is raised to 250—280°C and acetic acid is coUected for 0.5 to 3 h. The temperature is raised to 280—340°C and additional acetic acid is removed in vacuum for a period of 10 to 60 min. The opalescent polymer melt produced is extmded through a spinning jet, foUowed by melt drawdown. The use of the paraUel offset monomer, acetylated HNA, results in the formation of a series of random copolyesters of different compositions, many of which faU within the commercially acceptable melting range of... [Pg.67]

Ced rwood. Many varieties of cedarwood oil are obtained from different parts of the world. They are produced mainly by steam distillation of chipped heartwood, but some are also produced by solvent extraction. The oils, which vary significantly ia chemical composition, are used ia perfumes as such, but the main uses are as distillation fractions and chemical derivatives. For the latter purposes the most used oils, which are similar ia composition, are from Texas ia the United States (Juniperus mexicand) and from China Cupressusfunebris). The principal constituents of these oils are cedrene [11028-42-5] (4), thujopsene [470-40-6] (5), and cedrol [77-53-2] (6). The first two of these are obtained together by distillation and used mostiy ia the form of acetylated derivatives. Cedrol is used as such and, to a greater extent, as its acetate ester. [Pg.77]

Although all four tocopherols have been synthesized as their all-rac forms, the commercially significant form of tocopherol is i7//-n7i a-tocopheryl acetate. The commercial processes ia use are based on the work reported by several groups ia 1938 (15—17). These processes utilize a Friedel-Crafts-type condensation of 2,3,5-trimethylhydroquinone with either phytol (16), a phytyl haUde (7,16,17), or phytadiene (7). The principal synthesis (Fig. 3) ia current commercial use iavolves condensation of 2,3,5-trimethylhydroquiQone (13) with synthetic isophytol (14) ia an iaert solvent, such as benzene or hexane, with an acid catalyst, such as ziac chloride, boron trifluoride, or orthoboric acid/oxaUc acid (7,8,18) to give the all-rac-acetate ester (15b) by reaction with acetic anhydride. Purification of tocopheryl acetate is readily accompHshed by high vacuum molecular distillation and rectification (<1 mm Hg) to achieve the required USP standard. [Pg.146]

Esters of cinnamic acid are used more extensively than the acid itself, and can be converted to the acid by standard hydrolysis protocols. The Claisen condensation between benzaldehyde and the appropriate acetate ester provides a direct, high yield route to the simple esters. [Pg.174]

Unsaturated Hydrocarbons. Olefins from ethylene through octene have been converted into esters via acid-catalyzed nucleophilic addition. With ethylene and propjiene, only a single ester is produced using acetic acid, ethyl acetate and isopropyl acetate, respectively. With the butylenes, two products are possible j -butyl esters result from 1- and 2-butylenes, whereas tert-huty esters are obtained from isobutjiene. The C5 olefins give rise to three j iC-amyl esters and one /-amyl ester. As the carbon chain is lengthened, the reactivity of the olefin with organic acids increases. [Pg.381]

The use of a catalytic quantity of alkah equivalent to only a small fraction of the acetate has the advantage that contamination of the poly(vinyl alcohol) with salts, which are difficult to remove, is minimized. A variant of the process is the use of a mixture of alcohol with the acetate ester produced by the alcoholysis as the alcoholyzing agent. This provides a means of controlling the completeness of removal of the acetate groups from the poly(vinyl acetate) (111). [Pg.383]

Methyl isothiazole-4-acetate is nitrosated by pentyl nitrite, and the oximino ester formed can be hydrolyzed to the a-keto ester (78GEP2745246). Secondary alcohols (94) can be oxidized to the ketones (72GEP2223648). [Pg.155]

A formate ester can be cleaved selectively in the presence of an acetate [(MeOH, 1 eflux) ordil. NH3 (formate is 100 times faster than an acetate) ] or benzoate ester (dil. NHg). ... [Pg.88]

The benzoylformate ester can be prepared from the 3 -hydroxy group in a deoxy-ribonucleotide by reaction with benzoyl chloroformate (anh. Pyr, 20°, 12 h, 86% yield) it is cleaved by aqueous pyridine (20°, 12 h, 31% yield), conditions that do not cleave an acetate ester. ... [Pg.88]

The adamantoate ester is formed selectively from a primary hydroxyl group (e.g., from the 5 -OH in a ribonucleoside) by reaction with adamantoyl chloride, Pyr (20°, 16 h). It is cleaved by alkaline hydrolysis (0.25 N NaOH, 20 min), but is stable to milder alkaline hydrolysis (e.g., NH3, MeOH), conditions that cleave an acetate ester. ... [Pg.100]

The formation of ethyl cyano(pentafluorophenyl)acetate illustrates the intermolecular nucleophilic displacement of fluoride ion from an aromatic ring by a stabilized carbanion. The reaction proceeds readily as a result of the activation imparted by the electron-withdrawing fluorine atoms. The selective hydrolysis of a cyano ester to a nitrile has been described. (Pentafluorophenyl)acetonitrile has also been prepared by cyanide displacement on (pentafluorophenyl)methyl halides. However, this direct displacement is always aecompanied by an undesirable side reaetion to yield 15-20% of 2,3-bis(pentafluoro-phenyl)propionitrile. [Pg.82]


See other pages where A- acetate esters is mentioned: [Pg.323]    [Pg.149]    [Pg.323]    [Pg.149]    [Pg.168]    [Pg.348]    [Pg.301]    [Pg.307]    [Pg.887]    [Pg.1005]    [Pg.57]    [Pg.466]    [Pg.297]    [Pg.377]    [Pg.376]    [Pg.49]    [Pg.145]    [Pg.148]    [Pg.251]    [Pg.320]    [Pg.374]    [Pg.155]    [Pg.289]    [Pg.6]    [Pg.625]    [Pg.308]    [Pg.280]    [Pg.10]   
See also in sourсe #XX -- [ Pg.152 ]




SEARCH



5,5-acetal ester

Acetate esters

© 2024 chempedia.info