Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

4S containment

Fridovich recently summarized important aspects concerning the accurate detection and measurement of superoxide. He indicates that univalent reduction of O2 to superoxide is a facile process, but the instability of superoxide in aqueous solutions hinders its detection and measurement. To measure intracellular superoxide, he favors use of the rapid inactivation of [4Fe-4S]-containing dehydratases (such as aconitase) by oxidation of their iron-sulfur clusters. See Oxygen, Oxides Oxygen Radicals... [Pg.666]

Relatively recently Fe/S proteins have been found to function in the regulation of biosynthesis. This can be by promoting deoxyribonucleic acid (DNA) transcription, e.g. the [2Fe-2S] containing Escherichia coli superoxide-activated (SoxR) transcription activator [10-12], or the presumably [4Fe-4S]-containing E. coli transcription factor fumarate nitrate reduction (FNR) [13,14], Alternatively, the Fe/S protein can act by interference with messenger ribonucleic acid (mRNA) translation, i.e., the iron regulatory proteins (IRPs) [15,16], These interactions are stoichiometric, therefore not catalytic. Presumably, they are also a form of sensoring, namely, of oxidants and/or iron [17],... [Pg.211]

Classes of 4Fe-4S-Containing Proteins with Nonredox Roles°... [Pg.315]

Crack JC, den Hengst CD et al (2009) Characterization of [4Fe-4S]-containing and cluster-free forms of Streptomyces WhiD. Biochtanistry 48 12252—12264... [Pg.103]

Copper differs in its chemistry from the earlier members of the first transition series. The outer electronic configuration contains a completely-filled set of d-orbitals and. as expected, copper forms compounds where it has the oxidation state -)-l. losing the outer (4s) electron and retaining all the 3d electrons. However, like the transition metals preceding it, it also shows the oxidation state +2 oxidation states other than -l-l and - -2 are unimportant. [Pg.409]

Iron Sulfur Compounds. Many molecular compounds (18—20) are known in which iron is tetrahedraHy coordinated by a combination of thiolate and sulfide donors. Of the 10 or more stmcturaHy characterized classes of Fe—S compounds, the four shown in Figure 1 are known to occur in proteins. The mononuclear iron site REPLACE occurs in the one-iron bacterial electron-transfer protein mbredoxin. The [2Fe—2S] (10) and [4Fe—4S] (12) cubane stmctures are found in the 2-, 4-, and 8-iron ferredoxins, which are also electron-transfer proteins. The [3Fe—4S] voided cubane stmcture (11) has been found in some ferredoxins and in the inactive form of aconitase, the enzyme which catalyzes the stereospecific hydration—rehydration of citrate to isocitrate in the Krebs cycle. In addition, enzymes are known that contain either other types of iron sulfur clusters or iron sulfur clusters that include other metals. Examples include nitrogenase, which reduces N2 to NH at a MoFe Sg homocitrate cluster carbon monoxide dehydrogenase, which assembles acetyl-coenzyme A (acetyl-CoA) at a FeNiS site and hydrogenases, which catalyze the reversible reduction of protons to hydrogen gas. [Pg.442]

Butanol is produced commercially by the indirect hydration of / -butenes. However, current trends are towards the employment of inexpensive Raffinate 11 type feedstocks, ie, C-4 refinery streams containing predominandy / -butenes and saturated C-4s after removal of butadiene and isobutylene. In the traditional indirect hydration process, / -butenes are esterified with Hquid sulfuric acid and the intermediate butyl sulfate esters hydroly2ed. DEA Mineraloel (formerly Deutsche Texaco) currentiy operates a 2-butanol plant employing a direct hydration of / -butenes route (18) with their own proprietary catalyst. [Pg.357]

The other significant industrial route to /-butyl alcohol is the acid cataly2ed hydration of isobutylene (24), a process no longer practiced in the United States. Raffinate 1, C-4 refinery streams containing isobutylene [115-11-7], / -butenes and saturated C-4s or C-4 fluid catalytic cracker (ECC) feedstocks (23)... [Pg.357]

WV Sweeney, JC Rabmowitz. Proteins containing 4Ee-4S clusters An overview. Annu Rev Biochem 49 139-161, 1980. [Pg.414]

Three protein complexes have been isolated, including the flavoprotein (FP), iron-sulfur protein (IP), and hydrophobic protein (HP). FP contains three peptides (of mass 51, 24, and 10 kD) and bound FMN and has 2 Fe-S centers (a 2Fe-2S center and a 4Fe-4S center). IP contains six peptides and at least 3 Fe-S centers. HP contains at least seven peptides and one Fe-S center. [Pg.683]

Complex II is perhaps better known by its other name—succinate dehydrogenase, the only TCA cycle enzyme that is an integral membrane protein in the inner mitochondrial membrane. This enzyme has a mass of approximately 100 to 140 kD and is composed of four subunits two Fe-S proteins of masses 70 kD and 27 kD, and two other peptides of masses 15 kD and 13 kD. Also known as flavoprotein 2 (FP2), it contains an FAD covalently bound to a histidine residue (see Figure 20.15), and three Fe-S centers a 4Fe-4S cluster, a 3Fe-4S cluster, and a 2Fe-2S cluster. When succinate is converted to fumarate in the TCA cycle, concomitant reduction of bound FAD to FADHg occurs in succinate dehydrogenase. This FADHg transfers its electrons immediately to Fe-S centers, which pass them on to UQ. Electron flow from succinate to UQ,... [Pg.683]

This oil (55 g) is dissolved in methyl ethyl ketone (20 cc) and chromatographed over silica (232 g) contained in a column 4S cm in diameter. The column is eluted with methyl ethyl ketone the first 600 cc of eluate are discarded and 500 cc of eluate are then collected and concentrated under reduced pressure (25 mm Hg) a partially crystalline product (2.4 g) is thus obtained. 1-(2-Hydroxypropyl)-2-methyl-5-nitroimida2ole (0.96 g), melting point 72°C, is obtained on recrystallization from water (4 cc). [Pg.1369]

This technique has been used to track conceivable enantiophores of the Whelk-0 1 CSP ((3R,4S)-4-(3,5-dinitrobenzamido)-3-[3-(dimethylsilyloxy)propyl ]-l,2,3,4-tetrahydrophenanthrene) which was prepared in 1992 by Pirkle and Welch [22]. As seen in Fig. 4-7, a Whelk enantiophore should contain two ore more of the following molecular properties ... [Pg.107]

But I want to return to my claim that quantum mechanics does not really explain the fact that the third row contains 18 elements to take one example. The development of the first of the period from potassium to krypton is not due to the successive filling of 3s, 3p and 3d electrons but due to the filling of 4s, 3d and 4p. It just so happens that both of these sets of orbitals are filled by a total of 18 electrons. This coincidence is what gives the common explanation its apparent credence in this and later periods of the periodic table. As a consequence the explanation for the form of the periodic system in terms of how the quantum numbers are related is semi-empirical, since the order of orbital filling is obtained form experimental data. This is really the essence of Lowdin s quoted remark about the (n + , n) rule. [Pg.100]

Intermolecular [4C+2S] cycloaddition reactions where the diene moiety is contained in the carbene complex are less frequent than the [4S+2C] cycloadditions summarised in the previous section. However, 2-butadienylcarbene complexes, generated by a [2+2]/cyclobutene ring opening sequence, undergo Diels-Alder reactions with typical dienophiles [34,35] (Scheme 59). Also, Wulff et al. have described the application of pyranylidene complexes, obtained by a [3+3] cycloaddition reaction (see Sect. 2.8.1), in the inverse-electron-demand Diels-Alder reaction with enol ethers and enamines [87a]. Later, this strategy was applied to the synthesis of steroid-like ring skeletons [87b] (Scheme 59). [Pg.99]

The elucidation of the crystal structures of two high-spin EPR proteins has shown that the proposals for novel Fe-S clusters are not without substance. Two, rather than one novel Fe-S cluster, were shown to be present in nitrogenase, the key enzyme in the biotic fixation of molecular nitrogen 4, 5). Thus the FeMoco-cofactor comprises two metal clusters of composition [4Fe-3S] and [lMo-3Fe-3S] bridged by three inorganic sulfur atoms, and this is some 14 A distant from the P-cluster, which is essentially two [4Fe-4S] cubane moieties sharing a corner. The elucidation of the crystal structure of the Fepr protein (6) provides the second example of a high-spin EPR protein that contains yet another unprecedented Fe-S cluster. [Pg.221]

There are hundreds of iron-containing enzymes. In general, the iron can exist as (a) a mononuclear site, in which it is coordinated by a tetrapyrrole structure (hemes) or strictly by amino acid residues that donate oxo, nitrogen, or sulfur ligands (b) a dinuclear site in which the irons are bridged by oxo, nitrogen, or sulfur coordination (c) a trinuclear site as in the 3Fe-4S clusters or (d) a tetranuclear site as in the [4Fe-4S] clusters. [Pg.284]

During the 1960s, research on proteins containing iron—sulfur clusters was closely related to the field of photosynthesis. Whereas the first ferredoxin, a 2[4Fe-4S] protein, was obtained in 1962 from the nonphotosynthetic bacterium Clostridium pasteurianum (1), in the same year, a plant-type [2Fe-2S] ferredoxin was isolated from spinach chloroplasts (2). Despite the fact that members of this latter class of protein have been reported for eubacteria and even archaebacteria (for a review, see Ref. (3)), the name plant-type ferredoxin is often used to denote this family of iron—sulfur proteins. The two decades... [Pg.335]

The ferredoxins isolated from D. gigas have been quite extensively studied by different experimental approaches and spectroscopic techniques and will be used here as a reference system. Ferredoxin I D. gigas Fdl) and ferredoxin II (D. gigas Fdll) (60-62) are composed of the same polypeptide chain (58 amino acids, 6 cysteines) (63). D. gigas Fdl is a dimer and contains a single [4Fe-4S], whereas the same monomeric unit of the tetrameric D. gigas Fdll contains a single [3Fe-4S] ° cluster. [Pg.371]


See other pages where 4S containment is mentioned: [Pg.139]    [Pg.744]    [Pg.511]    [Pg.940]    [Pg.265]    [Pg.139]    [Pg.744]    [Pg.511]    [Pg.940]    [Pg.265]    [Pg.353]    [Pg.2222]    [Pg.585]    [Pg.442]    [Pg.457]    [Pg.120]    [Pg.1102]    [Pg.255]    [Pg.272]    [Pg.41]    [Pg.315]    [Pg.160]    [Pg.160]    [Pg.305]    [Pg.312]    [Pg.365]    [Pg.92]    [Pg.219]    [Pg.220]    [Pg.227]    [Pg.238]    [Pg.245]    [Pg.339]    [Pg.340]    [Pg.370]    [Pg.370]   
See also in sourсe #XX -- [ Pg.682 ]




SEARCH



© 2024 chempedia.info