Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Zinc-containing enzymes carbonic anhydrase models

The system illustrated by (272) forms the basis of a model for the zinc-containing metalloenzyme, carbonic anhydrase (Tabushi Kuroda, 1984). It contains Zn(n) bound to imidazole groups at the end of a hydrophobic pocket, as well as basic (amine) groups which are favourably placed to interact with a substrate carbon dioxide molecule. These are both features for the natural enzyme whose function is to catalyze the reversible hydration of carbon dioxide. The synthetic system is able to mimic the action of the enzyme (although side reactions also occur). Nevertheless, the formation of bicarbonate is still many orders of magnitude slower than occurs for the enzyme. [Pg.172]

Another way of bringing reactants into close proximity, which is encountered commonly in transition metal chemistry, is through metal ion complexation. The coordination of a reactant to a metal ion complex often activates its reactivity and can bring the reactant into close proximity with a second reactant or with a catalytic group. One example, shown in Fig. 6, is a zinc (11) complex of 1,5,9-triazacyclononane, as a model for the enzyme carbonic anhydrase, which contains a zinc (11) cofactor in its active site (4). In the aqua complex, the bound water molecule has a dramatically reduced pKa value of 7.3, which is similar to the pKa of the active site nucleophihc water. The corresponding cobalt (111) complex catalyzed ester hydrolysis at twice the rate because Co(lll) can coordinate both the hydroxide nucleophile and the ester carbonyl via a... [Pg.428]

The applications of these ligands have been limited to the work by Nakazawa et al.244 who found tris(pyrazolyl)methane titanium complexes to be high-activity catalysts for the polymerization of olefins, and the use of tris(pyrazolyl)methane zinc complexes to model zinc-containing enzymes, such as dihydrorootase and carbonic anhydrase.245 The structure of the free ligand HC(Me2pz)3 has also been reported.246... [Pg.195]

The ligand tris[2-(l-methylbenzimidazol-2-yl)ethyl] nitromethane (25) has been used in the formation of zinc complexes as models of the active site of carbonic anhydrase, and the formed complexes reveal affinity for the sulfonamide-containing enzyme inhibitor acetazolamide.248... [Pg.1165]

We have already seen a number of models for the zinc(II) containing enzymes such as carbonic anhydrase in Section 11.3.2. Zinc is an essential component in biochemistry, and forms part of the active site of more then 100 enzymes, of which hydrolases (such as alkaline phosphatase and carboxypeptidase A), transferases (e.g. DNA and RNA polymerase), oxidoreductases (e.g. alcohol dehydrogenase and superoxide dismutase) and lysases (carbonic anhydrase) are the most common. In addition, the non-enzyme zinc finger proteins have an important regulatory function. In many of these systems, the non-redox-active Zn2+ ion is present as a Fewis acidic centre at which substrates are coordinated, polarised and hence activated. Other roles of zinc include acting as a template and playing a structural or regulatory role. [Pg.827]


See other pages where Zinc-containing enzymes carbonic anhydrase models is mentioned: [Pg.599]    [Pg.632]    [Pg.1165]    [Pg.616]    [Pg.105]    [Pg.178]    [Pg.91]    [Pg.232]    [Pg.135]    [Pg.51]    [Pg.5176]    [Pg.5187]    [Pg.329]    [Pg.5186]    [Pg.232]    [Pg.356]    [Pg.277]   
See also in sourсe #XX -- [ Pg.1634 ]




SEARCH



Anhydrase

Carbonic anhydrase

Carbonic anhydrase (— carbonate

Carbonic anhydrase , zinc enzyme

Carbonic anhydrase models

Carbonic anhydrase zinc-containing enzymes

Carbonic anhydrases

Carbonic model

Enzyme models

Enzymes carbon

Enzymes carbonic anhydrase

Enzymes containing

Enzymes modeling

Enzymes modelling

Zinc carbonate

© 2024 chempedia.info