Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Yttria electrolytes

The result is the formation of a dense and uniform metal oxide layer in which the deposition rate is controlled by the diffusion rate of ionic species and the concentration of electronic charge carriers. This procedure is used to fabricate the thin layer of soHd electrolyte (yttria-stabilized 2irconia) and the interconnection (Mg-doped lanthanum chromite). [Pg.581]

J.K. Hong, I.-H. Oh, S.-A. Hong, and W.Y. Lee, Electrochemical Oxidation of Methanol over a Silver Electrode Deposited on Yttria-Stabilized Zirconia Electrolyte, /. Catal. 163, 95-105 (1996). [Pg.13]

S. Seimanides, P. Tsiakaras, X.E. Verykios, and C.G. Vayenas, Oxidative Coupling of Methane over Yttria-doped Zirconia Solid Electrolyte, Appl. Catal. 68, 41-53 (1991). [Pg.431]

Doped zirconia, yttria and thoria Other oxides (magnesia, alumina, etc.) Electrolytic conductor Nonconductors... [Pg.584]

Another application is in the oxidation of vapour mixtures in a chemical vapour transport reaction, the attempt being to coat materials with a thin layer of solid electrolyte. For example, a gas phase mixture consisting of the iodides of zirconium and yttrium is oxidized to form a thin layer of yttria-stabilized zirconia on the surface of an electrode such as one of the lanthanum-strontium doped transition metal perovskites Lai Sr MO --, which can transmit oxygen as ions and electrons from an isolated volume of oxygen gas. [Pg.242]

A conductivity cell is set up using an yttria-stabilized zirconia electrolyte. At 900°C the equilibrium pressure in the cell was 1.02 x 10-10 atm, and the reference pressure outside the cell was 7.94 x 10 18 atm. (a) What is the cell voltage The temperature was dropped to 800°C and the reference pressure changed to 1.61 x 10-19 atm. The measured equilibrium voltage was 946 mV. (b) What is the equilibrium oxygen pressure in the cell [Data adapted from D-K. Lee et al., J. Solid State Chem., 178, 185-193 (2005).]... [Pg.293]

Jiang SP and Badwal SPS. Hydrogen oxidation at the nickel and platinum electrodes on yttria-tetragonal zirconia electrolyte. J Electrochem Soc 1997 144 3777-3784. [Pg.125]

The perovskite oxides used for SOFC cathodes can react with other fuel cell components especially with yttria-zirconia electrolyte and chromium-containing interconnect materials at high temperatures. However, the relative reactivity of the cathodes at a particular temperature and the formation of different phases in the fuel cell atmosphere... [Pg.156]

Electrolyte Yttria stabilized Zr02 0.5-mm thickness Yttria stabilized Zr02 Yttria stabilized Zr02 (8 mol% Y2O3) EVD 10.5 X 10 cm/cm °C expansion from room temperature to 1000°C 30-40-pm thickness... [Pg.176]

It has been observed that solid oxide fuel cell voltage losses are dominated by ohmic polarization and that the most significant contribution to the ohmic polarization is the interfacial resistance between the anode and the electrolyte (23). This interfacial resistance is dependent on nickel distribution in the anode. A process has been developed, PMSS (pyrolysis of metallic soap slurry), where NiO particles are surrounded by thin films or fine precipitates of yttria stabilized zirconia (YSZ) to improve nickel dispersion to strengthen adhesion of the anode to the YSZ electrolyte. This may help relieve the mismatch in thermal expansion between the anode and the electrolyte. [Pg.184]

The activation energy represents the ease of ion hopping, as already indicated above and shown in Fig. 2.5. It is related directly to the crystal structure and in particular, to the openness of the conduction pathways. Most ionic solids have densely packed crystal structures with narrow bottlenecks and without obvious well-defined conduction pathways. Consequently, the activation energies for ion hopping are large, usually 1 eV ( 96 kJ mole ) or greater and conductivity values are low. In solid electrolytes, by contrast, open conduction pathways exist and activation energies may be much lower, as low as 0.03 eV in Agl, 0.15 eV in /S-alumina and 0.90 eV in yttria-stabilised zirconia. [Pg.18]

Figure 29. Conductivity of some intermediate-temperature proton conductors, compared to the conductivity of Nafion and the oxide ion conductivity of YSZ (yttria-stabilized zirconia), the standard electrolyte materials for low- and high-temperature fuel cells, proton exchange membrane fuel cells (PEMFCs), and solid oxide fuel cells (SOFCs). Figure 29. Conductivity of some intermediate-temperature proton conductors, compared to the conductivity of Nafion and the oxide ion conductivity of YSZ (yttria-stabilized zirconia), the standard electrolyte materials for low- and high-temperature fuel cells, proton exchange membrane fuel cells (PEMFCs), and solid oxide fuel cells (SOFCs).
The anode is generally made of nickel/yttria-stabi-lized zirconia Cermet. The cathode is an LSM layer chemically expressed as Lai- fSi fMn03. The electrolyte is an Y203-doped zirconia called YSZ. [Pg.522]

For the purposes of review. Figure 1 illustrates the basic function of the cathode in a solid oxide fuel cell. Whether acting alone or as part of a stack of cells, each cell consist of a free-standing or supported membrane of an oxygen-ion-conducting electrolyte, often yttria-stabilized zirconia (YSZ). Oxygen, which is fed (usually as air) to one side of the membrane, is reduced by the cathode to oxygen ions via the overall half-cell reaction... [Pg.553]


See other pages where Yttria electrolytes is mentioned: [Pg.560]    [Pg.560]    [Pg.577]    [Pg.432]    [Pg.349]    [Pg.115]    [Pg.182]    [Pg.78]    [Pg.97]    [Pg.345]    [Pg.439]    [Pg.229]    [Pg.513]    [Pg.17]    [Pg.287]    [Pg.289]    [Pg.293]    [Pg.328]    [Pg.5]    [Pg.14]    [Pg.16]    [Pg.18]    [Pg.63]    [Pg.158]    [Pg.309]    [Pg.182]    [Pg.183]    [Pg.320]    [Pg.27]   
See also in sourсe #XX -- [ Pg.296 , Pg.867 ]




SEARCH



© 2024 chempedia.info