Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Xanthan gum concentration

Part I. Slippage at different oil and xanthan gum concentrations. J. Food Eng. 25,397-408. Ma, L., and Barbosa-Canovas, G. V. (1995b). Rheological characterization of mayonnaise. Part II. Flow and viscoelastic properties at different oil and xanthan gum concentrations. J. Food Eng. 25, 409-425. [Pg.66]

Figure 15 Shear stress verses shear rate for various xanthan gum concentrations (A) 0.133% (B) 0.3% (C) 0.5%. Yield value is indicated by a small increase in shear stress at low shear rate seen in B and C. (Reprinted with permission from Ref. 54.)... Figure 15 Shear stress verses shear rate for various xanthan gum concentrations (A) 0.133% (B) 0.3% (C) 0.5%. Yield value is indicated by a small increase in shear stress at low shear rate seen in B and C. (Reprinted with permission from Ref. 54.)...
Concentrations above 0.3% form a gel with borate which is reversible upon the subsequent addition of mannitol (a sequestrant for borate) or of acid. Usefiil combinations are formed with carrageenan (63) and xanthan gum (64) and agar. In many appHcations, it is used in combination with these gums at considerable cost savings. [Pg.435]

Properties. Xanthan gum is a cream-colored powder that dissolves in either hot or cold water to produce solutions with high viscosity at low concentration. These solutions exhibit pseudoplasticity, ie, the viscosity decreases as the shear rate increases. This decrease is instantaneous and reversible. Solutions, particularly in the presence of small amounts of electrolyte, have exceUent thermal stabiHty, and their viscosity is essentially constant over the range 0 to 80°C. They are not affected by changes in pH ranging from 2 to 10. [Pg.436]

Xanthan gum dissolves in acids and bases, and under certain conditions, the viscosity remains stable for several months. Xanthan gum has exceUent StabiHty and compatibUity with high concentrations of many salts, eg, 15% solutions of sodium chloride and 25% solutions of calcium chloride (79). [Pg.436]

Solutions of welan are very viscous and pseudoplastic, ie, shear results in a dramatic reduction in viscosity that immediately returns when shearing is stopped, even at low polymer concentrations (230). They maintain viscosity at elevated temperatures better than xanthan gum at 135°C the viscosity half-life of a 0.4% xanthan gum solution is essentially zero, whereas a welan gum solution has a viscosity half-life of 900 minutes (230). The addition of salt to welan solutions slightly reduces viscosity, but not significantly. It has excellent stabiUty and theological properties in seawater, brine, or 3% KCl solutions... [Pg.299]

Low molecular weight (1000—5000) polyacrylates and copolymers of acryflc acid and AMPS are used as dispersants for weighted water-base muds (64). These materials, 40—50% of which is the active polymer, are usually provided in a Hquid form. They are particularly useful where high temperatures are encountered or in muds, which derive most of their viscosity from fine drill soHds, and polymers such as xanthan gum and polyacrylamide. Another high temperature polymer, a sulfonated styrene maleic—anhydride copolymer, is provided in powdered form (65,66). AH of these materials are used in relatively low (ca 0.2—0.7 kg/m (0.5—2 lb /bbl)) concentrations in the mud. [Pg.180]

Polar organic solvents readily precipitate exopolysaccharides from solution. The solvents commonly used are acetone, methanol, ethanol and propan-2-ol. Cation concentration of the fermentation liquor influences the amount of solvent required for efficient product recovery. In the case of propan-2-ol, increasing the cation concentration can lead to a four-fold reduction in die volume of solvent required to precipitate xanthan gum. Salts such as calcium nitrate and potassium chloride are added to fermentation broths for this purpose. [Pg.211]

The alternative large scale recovery method to precipitation is ultrafiltration. For concentration of viscous exopolysaccharides, ultrafiltration is only effective for pseudoplastic polymers (shearing reduces effective viscosity see section 7.7). Thus, pseudoplastic xanthan gum can be concentrated to a viscosity of around 30,000 centipoise by ultrafiltration, whereas other polysaccharides which are less pseudoplastic, are concentrated only to a fraction of this viscosity and have proportionally lower flux rates. Xanthan gum is routinely concentrated 5 to 10-fold by ultrafiltration. [Pg.212]

At low ionic strengths, Tm increases exponentially with ion activity. The effect of high concentrations of salts or miscible solvents depends on the influence they have on hydrogen-bonding and may increase or decrease Tm. In the case of xanthan gum, the value of Tm can be adjusted from ambient to over 200°C by the addition of appropriate salts. Table 7.2 presents Tm values for some industrial viscosifiers. [Pg.216]

Fluidized aqueous suspensions of 15% by weight or more of hydroxyethyl-cellulose, hydrophobically modified cellulose ether, hydrophobically modified hydroxyethylcellulose, methylcellulose, hydroxypropylmethylcellulose, and polyethylene oxide are prepared by adding the polymer to a concentrated sodium formate solution containing xanthan gum as a stabilizer [278]. The xanthan gum is dissolved in water before sodium formate is added. Then the polymer is added to the solution to form a fluid suspension of the polymers. The polymer suspension can serve as an aqueous concentrate for further use. [Pg.246]

J. A. Ahlgren. Enzymatic hydrolysis of xanthan gum at elevated temperatures and salt concentrations. In Proceedings Volume, volume ,... [Pg.346]

When dissolved in more saline waters, xanthan gum produces a higher apparent viscosity than the same concentration of polyacrylamide (292). Prehydration of xanthan in fresh water followed by dilution in the saline injection water has been reported to provide higher viscosity than direct polymer dissolution in the same injection water. Optical rotation and intrinsic viscosity dependence on temperature indicate xanthan exists in a more ordered conformation in brine than in fresh water (293). [Pg.35]

In a recent study by Sun et al. (2007) of 20 vol% oil-in-water emulsions stabilized by 2 wt% whey protein isolate (WPI), the influence of addition of incompatible xanthan gum (XG) was investigated at different concentrations. It was demonstrated that polysaccharide addition had no significant effect on the average droplet size (d32). But emulsion microstructure and creaming behaviour indicated that the degree of flocculation was a sensitive function of XG concentration with no XG present, there was no flocculation, for 0.02-0.15 wt% XG, there was a limited... [Pg.246]


See other pages where Xanthan gum concentration is mentioned: [Pg.255]    [Pg.48]    [Pg.605]    [Pg.369]    [Pg.255]    [Pg.48]    [Pg.605]    [Pg.369]    [Pg.444]    [Pg.436]    [Pg.436]    [Pg.301]    [Pg.302]    [Pg.302]    [Pg.302]    [Pg.302]    [Pg.303]    [Pg.179]    [Pg.192]    [Pg.192]    [Pg.192]    [Pg.241]    [Pg.445]    [Pg.11]    [Pg.30]    [Pg.32]    [Pg.34]    [Pg.35]    [Pg.35]    [Pg.354]    [Pg.669]    [Pg.195]    [Pg.66]    [Pg.192]    [Pg.193]    [Pg.208]    [Pg.5]    [Pg.436]   
See also in sourсe #XX -- [ Pg.257 ]




SEARCH



Xanthanates

© 2024 chempedia.info