Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Well-founded induction

Magnetic principles are used, as well as inductive, capacitive, and optical sensors. In many applications, where cost requirements predominate over performance and reliability issues, simple potentiometers are often found. The market volume in 2002 is about 150 million units and will approach 300 million units, worth more than 1700 million, in 2008. [Pg.16]

In DDD, systems are modeled as networks of streams, which are infinite sequences over a type. Streams and other nonfinite structures raise issues in model theory that are only now being ironed out (Barwise Moss 1996). These problems are intrinsic to logics based in well-founded set theory, which must deal with streams indirectly. The typical representation is mapping from natural numbers to values. The problem is that proofs about streams under this representation reduce to inductions over the naturals, instead of "structural coinductions that reflecting the definition style. [Pg.265]

After A. N. BaMi [1] and K. O. Engler [2] formulated the peroxide theory of oxidation, a large number of studies appeared in which the oxidation of a number of hydrocarbons and various other organic substances was studied. It was found that many oxidation reactions are autocatalytically accelerated and are characterized by well-defined induction periods. [Pg.4]

The second step is the selection of a well-founded relation (wfr) over the type of the induction parameter. Two heuristics have been identified ... [Pg.59]

An interesting exercise is to compare logic algorithms designed by induction on different parameters, or using different well-founded relations. Considering the heuristics above, it is no surprise that, for a binary predicate r having X and Y as parameters, LA r-int-X) and LA r-ext-Y) are structurally similar, or that LA r-int-Y) and LA r-ext-X) are structurally similar. [Pg.60]

Let s first reconsider Step 2 (Selection of a Well-Founded Relation), and follow the Extrinsic Heuristic when selecting a well-founded relation over the type of the induction parameter L. This means that we want to decompose L into something smaller in a way reflecting the structure of parameter C. Every element of C represents a summary of a plateau of L, so the idea is to decompose L by extracting its first maximal plateau as head of L, and the corresponding suffix as tail of L. This decomposition is non-trivial, but considerably facilitates the rest of the construction. Step 3 is unaffected by this decision, and after Step 4, the result is ... [Pg.64]

A divide-and-conquer algorithm for a binary predicate r over parameters X and Y works as follows. Let X be the induction parameter. IfX is minimal, then Y is (usually) easily found by directly solving the problem. Otherwise, that is if X is non-minimal, decompose X into a vector HX of heads of X and a vector TX of tails of X, the tails being of the same type as X, as well as smaller than X according to some well-founded relation. The tails TX recursively yield tails TY of Y. The heads HX are processed into a vector HY of heads of Y. Finally, Y is composed from its heads HY and tails TY. [Pg.104]

The instance of X, that is the induction parameter, must be of an inductive type. Indeed, otherwise, its decomposition into tails TX that are each smaller thanX according to some well-founded relation would be impossible. [Pg.107]

An instantiation of the Decompose predicate-variable deterministically decomposes, in the non-minimal case, the induction parameter, say X, into a vector HX of heads and a vector TX of tails, the tails TXj being smaller than X according to some well-founded relation. These tails are meant for the recursive computation of the tails TYj of the other parameter, say Y. Step 3 yields LA ir) by instantiating the Decompose predicate-variable by means of the Database Method, which here relies on a database of type-specific decomposition formulas. [Pg.154]

How to discover compound induction parameters Due to our restriction to version 3 of the divide-and-conquer schema. Task A only considers simple induction parameters. Meeting this challenge is thus considered future research. According to what well-founded relation to decompose the induction parameter Step 3 (Synthesis of Decompose) does this non-deterministically by considering all predefined decomposition operators (which each reflect some well-founded relation) of a typed database, and possibly by listening to the specifier s hints. [Pg.194]

Ginsenan S-IIA, a polysaccharide fraction from the roots of P. ginseng is a potent inducer of IL-8 production by human monocytes and THP-1 cells, and this induction is accompanied by increased IL-8 mRNA expression. The polysaccharide appears from the structural feature to be a mixture of arabino-galactan type I and type II, based on the presence of 1,3-, 1,6-, 1,3,6-, 1,4-, and 1,4,6-galactose units as well as terminal arabinose and 1,5-, 1,3,5-, and 1,2,5-linked units. It also contains 1,4,6-linked glucose units that together with the 1,2,5-linked arabinose units are different from the units found in other ginseng polysaccharides and may thus be of importance for the activity [64]. [Pg.88]

There are many studies on the induction and spread of spiking in animals both in vivo and in isolated brain slices, generally initiated by the use of GABA antagonists or removal of Mg + ions in vitro). Unfortunately since neither of these events is likely to occur in or around a human epileptic focus the results do not tell us much about how focal activity arises and spreads in humans. This needs to be achieved by the use of human epileptic tissue even though the procedures found to control experimentally induced spiking may well be applicable to humans. [Pg.334]

There arises the question as to what causes the upper and lower potentials. The upper potential was found to be the potential of interface o/wl in the presence of tetrabutylammonium chloride in phase o as well as the potential during the induction period. The upper potential should thus derive from a mixed Galvani potential of the transfer of... [Pg.709]


See other pages where Well-founded induction is mentioned: [Pg.58]    [Pg.109]    [Pg.58]    [Pg.109]    [Pg.117]    [Pg.405]    [Pg.55]    [Pg.364]    [Pg.33]    [Pg.441]    [Pg.4]    [Pg.722]    [Pg.75]    [Pg.86]    [Pg.86]    [Pg.149]    [Pg.150]    [Pg.169]    [Pg.381]    [Pg.446]    [Pg.494]    [Pg.266]    [Pg.10]    [Pg.126]    [Pg.230]    [Pg.82]    [Pg.461]    [Pg.221]    [Pg.238]    [Pg.424]    [Pg.258]    [Pg.242]    [Pg.344]    [Pg.147]    [Pg.168]    [Pg.2]   
See also in sourсe #XX -- [ Pg.58 , Pg.109 ]




SEARCH



Found

Well-founded

© 2024 chempedia.info