Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Weak acids curves

The weak acid curves can also be calculated. This involves the use of the equilibrium constant expression for a weak monoprotic acid ionization ... [Pg.101]

Curve (b) shows the titration of acetic acid, K, 1.75 x 10"1 mol dm"1 at two different concentrations. The initial additions of OH" establish a buffer solution in which the H30+ concentration is only slowly reduced. The resulting fall in conductance is increasingly counteracted by the addition of Nr and the formation of CHjCOO" thus leading to a minimum in the cur e. After the equivalence-point, there is a more rapid increase due to t -addition of excess OH" and Na+. Concentrated solutions of weak acids gi more pronounced changes of slope at the equivalence point than dilu solution. The change in slope is well defined for very weak acids, curve (c. [Pg.263]

The pH curve for this titration is shown in Fig. 15.3. It is important to note the differences between this curve and that in Fig. 15.1. For example, the shapes of the plots are quite different before the equivalence point, although they are very similar after that point. (The shapes of the strong and weak acid curves are the same after the equivalence points because excess OH controls the pH in this region in both cases.) Near the beginning of the titration of the weak acid, the pH increases more rapidly than it does in the strong acid case. It levels off near the halfway point and then increases... [Pg.735]

Features of the Curve The dotted curve in Figure 19.8 corresponds to the bottom half of the strong acid-strong base curve (Figure 19.7). There are four key points to note for the weak acid curve, and the first three differ from the strong acid curve. [Pg.629]

The approach that we have worked out for the titration of a monoprotic weak acid with a strong base can be extended to reactions involving multiprotic acids or bases and mixtures of acids or bases. As the complexity of the titration increases, however, the necessary calculations become more time-consuming. Not surprisingly, a variety of algebraic and computer spreadsheet approaches have been described to aid in constructing titration curves. [Pg.284]

This approach can be used to sketch titration curves for other acid-base titrations including those involving polyprotic weak acids and bases or mixtures of weak acids and bases (Figure 9.8). Figure 9.8a, for example, shows the titration curve when titrating a diprotic weak acid, H2A, with a strong base. Since the analyte is... [Pg.286]

Figure 9.8b shows a titration curve for a mixture consisting of two weak acids HA and HB. Again, there are two equivalence points. In this case, however, the equivalence points do not require the same volume of titrant because the concentration of HA is greater than that for HB. Since HA is the stronger of the two weak acids, it reacts first thus, the pH before the first equivalence point is controlled by the HA/A buffer. Between the two equivalence points the pH reflects the titration of HB and is determined by the HB/B buffer. Finally, after the second equivalence point, the excess strong base titrant is responsible for the pH. [Pg.287]

Where Is the Equivalence Point We have already learned how to calculate the equivalence point for the titration of a strong acid with a strong base, and for the titration of a weak acid with a strong base. We also have learned to sketch a titration curve with a minimum of calculations. Can we also locate the equivalence point without performing any calculations The answer, as you may have guessed, is often yes ... [Pg.287]

It has been shown that for most acid-base titrations the inflection point, which corresponds to the greatest slope in the titration curve, very nearly coincides with the equivalence point. The inflection point actually precedes the equivalence point, with the error approaching 0.1% for weak acids or weak bases with dissociation constants smaller than 10 , or for very dilute solutions. Equivalence points determined in this fashion are indicated on the titration curves in figure 9.8. [Pg.287]

The principal limitation to using a titration curve to locate the equivalence point is that an inflection point must be present. Sometimes, however, an inflection point may be missing or difficult to detect, figure 9.9, for example, demonstrates the influence of the acid dissociation constant, iQ, on the titration curve for a weak acid with a strong base titrant. The inflection point is visible, even if barely so, for acid dissociation constants larger than 10 , but is missing when is 10 k... [Pg.287]

The most obvious sensor for an acid-base titration is a pH electrode.For example, Table 9.5 lists values for the pH and volume of titrant obtained during the titration of a weak acid with NaOH. The resulting titration curve, which is called a potentiometric titration curve, is shown in Figure 9.13a. The simplest method for finding the end point is to visually locate the inflection point of the titration curve. This is also the least accurate method, particularly if the titration curve s slope at the equivalence point is small. [Pg.290]

Titration curves for a weak acid with 0.100 M NaOH—(a) normal titration curve (b) first derivative titration curve ... [Pg.292]

When the concentrations of HA and A are equal, equation 9.9 reduces to = [HaO ]) ot pH = pKa. Thus, the piweak acid can be determined by measuring the pH for a solution in which half of the weak acid has been neutralized. On a titration curve, the point of half-neutralization is approximated by the volume of titrant that is half of that needed to reach the equivalence point. As shown in Figure 9.20, an estimate of the weak acid s piQ can be obtained directly from the titration curve. [Pg.310]

This method provides a reasonable estimate of the piQ, provided that the weak acid is neither too strong nor too weak. These limitations are easily appreciated by considering two limiting cases. For the first case let s assume that the acid is strong enough that it is more than 50% dissociated before the titration begins. As a result the concentration of HA before the equivalence point is always less than the concentration of A , and there is no point along the titration curve where [HA] = [A ]. At the other extreme, if the acid is too weak, the equilibrium constant for the titration reaction... [Pg.310]

Estimating the p/Cg for a weak acid from its titration curve with a strong base. [Pg.310]

A second approach for determining the piQ of an acid is to replot the titration curve in a linear form as a Gran plot. For example, earlier we learned that the titration of a weak acid with a strong base can be plotted in a linear form using the following equation... [Pg.311]

Potentiometric titration curves are used to determine the molecular weight and fQ or for weak acid or weak base analytes. The analysis is accomplished using a nonlinear least squares fit to the potentiometric curve. The appropriate master equation can be provided, or its derivation can be left as a challenge. [Pg.359]

The following data were collected with an automatic titrator during the titration of a monoprotic weak acid with a strong base. Prepare normal, first-derivative, second-derivative, and Gran plot titration curves for this data, and locate the equivalence point for each. [Pg.360]

Schwartz has published some hypothetical data for the titration of a 1.02 X ICr" M solution of a monoprotic weak acid (pXa = 8.16) with 1.004 X ICr M NaOH. " A 50-mL pipet is used to transfer a portion of the weak acid solution to the titration vessel. Calibration of the pipet, however, shows that it delivers a volume of only 49.94 ml. Prepare normal, first-derivative, second-derivative, and Gran plot titration curves for these data, and determine the equivalence point for each. How do these equivalence points compare with the expected equivalence point Comment on the utility of each titration curve for the analysis of very dilute solutions of very weak acids. [Pg.361]

Calculate or sketch (or both) the titration curves for 50.0 ml of a 0.100 M solution of a monoprotic weak acid (pfQ = 8) with 0.1 M strong base in (a) water and (b) a non-aqueous solvent with ffg = 10 . You may assume that the change in solvent does not affect the weak acid s pfQ. [Pg.361]

The acidity of a water sample is determined by titrating to fixed end points of 3.7 and 8.3, with the former providing a measure of the concentration of strong acid, and the latter a measure of the combined concentrations of strong acid and weak acid. Sketch a titration curve for a mixture of 0.10 M HCl and 0.10 M H2CO3 with 0.20 M strong base, and use it to justify the choice of these end points. [Pg.362]

Using its titration curve, determine the acid dissociation constant for the weak acid in problem 6. [Pg.363]

Chemical Limitations to Beer s Law Chemical deviations from Beer s law can occur when the absorbing species is involved in an equilibrium reaction. Consider, as an example, an analysis for the weak acid, HA. To construct a Beer s law calibration curve, several standards containing known total concentrations of HA, Cmt, are prepared and the absorbance of each is measured at the same wavelength. Since HA is a weak acid, it exists in equilibrium with its conjugate weak base, A ... [Pg.386]

In the discussion of the relative acidity of carboxylic acids in Chapter 1, the thermodynamic acidity, expressed as the acid dissociation constant, was taken as the measure of acidity. It is straightforward to determine dissociation constants of such adds in aqueous solution by measurement of the titration curve with a pH-sensitive electrode (pH meter). Determination of the acidity of carbon acids is more difficult. Because most are very weak acids, very strong bases are required to cause deprotonation. Water and alcohols are far more acidic than most hydrocarbons and are unsuitable solvents for generation of hydrocarbon anions. Any strong base will deprotonate the solvent rather than the hydrocarbon. For synthetic purposes, aprotic solvents such as ether, tetrahydrofuran (THF), and dimethoxyethane (DME) are used, but for equilibrium measurements solvents that promote dissociation of ion pairs and ion clusters are preferred. Weakly acidic solvents such as DMSO and cyclohexylamine are used in the preparation of strongly basic carbanions. The high polarity and cation-solvating ability of DMSO facilitate dissociation... [Pg.405]

Figure 6-9 shows Fhs and Fs plotted against pH, according to Eqs. (6-61) and (6-62), for a weak acid of p/c = 4.0. Because of their appearance such curves are called S-shaped or sigmoid curves. [Pg.278]

A less obvious scheme that can lead to a bell-shaped curve has been recognized by Zemer and Bender. The substrate is a weak acid or base, but possesses only one ionizable group, and no other ionizable reactant is involved (other than water). The second inflection in the curve is ascribed to an ionizable group created in an intermediate. An example has been discovered in the hydrolysis of o-carboxy-phthalimide ... [Pg.292]


See other pages where Weak acids curves is mentioned: [Pg.527]    [Pg.266]    [Pg.266]    [Pg.302]    [Pg.403]    [Pg.722]    [Pg.312]    [Pg.113]    [Pg.705]    [Pg.527]    [Pg.266]    [Pg.266]    [Pg.302]    [Pg.403]    [Pg.722]    [Pg.312]    [Pg.113]    [Pg.705]    [Pg.284]    [Pg.284]    [Pg.286]    [Pg.287]    [Pg.288]    [Pg.296]    [Pg.296]    [Pg.296]    [Pg.302]    [Pg.360]    [Pg.387]    [Pg.450]    [Pg.329]    [Pg.390]    [Pg.66]   


SEARCH



Spreadsheet weak acid titration curve

The Monoprotic Weak Acid-Strong Base Curve

Titration curve weak acid, strong base

Weak acids

Weakly acidic

© 2024 chempedia.info