Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water solubility mercury

Any other water-soluble mercury salt may be used. [Pg.89]

Mercury is most accurately determined by the cold vapor atomic absorption spectroscopic method. The instrument is set at the wavelength 253.7 nm. The metal, its salts and organic derivatives in aqueous solution can be measured by this method. The solution or the solid compounds are digested with nitric acid to convert into water-soluble mercury(ll) nitrate, followed by treatment with potassium permanganate and potassium persulfate under careful heating. The excess oxidants in the solution are reduced with NaCl-hydroxylamine sulfate. The solution is treated with stannous chloride and aerated. The cold Hg vapor volatdizes into the absorption cell where absorbance is measured. [Pg.562]

The third approach is based on thermoinjection of electrochemically generated mercury [45]. Gold wire electrodes with diameter of 50 or 100 gm were used. Metallic mercury was formed on the gold wires by electrochemical reduction from water-soluble mercury salt. [Pg.247]

Mercury, in its elemental form or in a chemical compound is highly toxic. Water-soluble mercury compounds, such as mercu-ry(II) nitrate, can be removed from industrial wastewater by adding sodium sulfide to the water, which forms a precipitate of mercury(II) sulfide, which can then be filtered out. [Pg.264]

The electrode potential of aluminium would lead us to expect attack by water. The inertness to water is due to the formation of an unreactive layer of oxide on the metal surface. In the presence of mercury, aluminium readily forms an amalgam (destroying the original surface) which is. therefore, rapidly attacked by water. Since mercury can be readily displaced from its soluble salts by aluminium, contact with such salts must be avoided if rapid corrosion and weakening of aluminium structures is to be prevented. [Pg.144]

Yellow mercuric oxide may be obtained by precipitation from solutions of practically any water-soluble mercuric salt through the addition of alkah. The most economical are mercuric chloride or nitrate. Although yellow HgO has some medicinal value in ointments and other such preparations, the primary use is as a raw material for other mercury compounds, eg, Millon s ha.se[12529-66-7], Hg2NOH, which is formed by the reaction of aqueous ammonia and yellow mercuric oxide. [Pg.113]

Another method of removing mercury compounds from aqueous solution is to treat them with water-soluble reducing agents, thus hberating metallic mercury (26). The use of formaldehyde (qv) at a pH of 10—12 also is recommended. [Pg.117]

The solubility of organomercury compounds depends primarily on the nature of the X group nitrates and sulfates tend to be salt-like and relatively water-soluble, whereas chlorides are covalent, nonpolar compounds of low water solubility. Methyl mercury compounds tend to be more volatile than other organomercury compounds. [Pg.164]

Due to its chemical inertness, vaporizable nature (enthalpy of vaporization = 59.15 kJ/mol), and low water solubility (at 20°C, 2 x 10 6 g/g), elemental mercury vapor has over one year of residence time, long-range transport, and global distribution in the atmosphere [3-8]. [Pg.240]

Atmospheric deposition is an important source of mercury for surface waters and terrestrial environments that can be categorized into two different types, wet and dry depositions. Wet deposition during rainfall is the primary mechanism by which mercury is transported from the atmosphere to surface waters and land. Whereas the predominant form of Hg in the atmosphere is Hg° (>95%), is oxidized in the upper atmosphere to water-soluble ionic mercury, which is returned to the earth s surface in rainwater. In addition to wet deposition of Hg in precipitation, there can also be dry deposition of Hg°, particulate (HgP), and reactive gaseous mercury (RGM) to watersheds [9-11]. In fact, about 90% of the total Hg input to the aquatic environment is recycled to the atmosphere and less than 10% reaches the sediments [12]. By current consensus, it is generally accepted that sulfate-reducing bacteria (SRB)... [Pg.240]

Preparative photolysis of AETSAPPE (0.25 M aqueous solution) at 254 nm (Rayonet reactor) resulted in the formation of the disulfide product 2-amino(2-hydroxy-3-(phenyl ether) propyl) ether disulfide (AHPEPED) as the primary photoproduct Photolysis of AETSAPPE at 254 nm (isolated line of medium pressure mercury lamp) resulted in rapid initial loss of starting material accompanied by formation (analyzed by HPLC) of AHPEPED (Figure 12a and 12b) (Scheme IV). Similar results were obtained for photolysis- at 280 nm. Quantum yields for disappearance of AETSAPPE and formation of AHPEPED at 254 nm and 280 nm are given in Table I. The photolytic decomposition of AETSAPPE in water was also accomplished by sensitization ( x =366 nm) with (4-benzoylbenzyl) trimethylammonium chloride (BTC), a water soluble benzophenone type triplet sensitizer. The quantum yield for the sensitized disappearance (Table I) is comparable to the results for direct photolysis (unfortunately, due to experimental complications we did not measure the quantum yield for AHPEPED formation). These results indicate that direct photolysis of AETSAPPE probably proceeds from a triplet state. [Pg.296]

The product generally contains some mercuryfll) chloride which is removed by treating the product mixture with water and filtering out the insoluble mercury(I) salt from the soluble mercury(II) salt. [Pg.565]

Mercury(II) chloride reacts with alkah metal chlorides to form water soluble complex salts, such as KHgCls or K2HgCl4 ... [Pg.568]

The study of the interfacial liquid-liquid phase however is complicated by several factors, of which the chief is the mutual solubility of the liquids. No two liquids are completely immiscible even in such extreme cases as water and mercury or water and petroleum the interfacial energy between two pure liquids will thus be affected by such inter-solution of the two homogeneous phases. In cases of complete intersolubility there is evidently no boundary interface and consequently no interfacial energy. On addition of a solute to one of the liquids a partition of the solute between all three phases, the two liquids and the interfacial phase, takes place. Thus we obtain an apparent interfacial concentration of the added solute. The most varied possibilities, such as positive or negative adsorption from both liquids or positive adsorption from one and negative adsorption from the other, are evidently open to us. In spite of the complexity of such systems it is necessary that information on such points should be available, since one of the most important colloidal systems, the emulsions, consisting of liquids dispersed in liquids, owe their properties and peculiarities to an extended interfacial phase of this character. [Pg.95]

Forrester Environmental Services, Inc., has developed a group of technologies for the stabilization of wastes containing heavy metals, such as lead, cadmium, arsenic, mercury, copper, zinc, and antimony. These technologies have been used in both industrial pollution prevention and remediation applications. One version of the technology involves the use of water-soluble phosphates and various complexing agents to produce a less soluble lead waste. This process results in a leach-resistant lead product. [Pg.595]

When used in therapeutic doses, dimercaprol is associated with a high incidence of adverse effects, including hypertension, tachycardia, nausea, vomiting, lacrimation, salivation, fever (particularly in children), and pain at the injection site. Its use has also been associated with thrombocytopenia and increased prothrombin time—factors that may limit intramuscular injection because of the risk of hematoma formation at the injection site. Despite its protective effects in acutely intoxicated animals, dimercaprol may redistribute arsenic and mercury to the central nervous system, and it is not advocated for treatment of chronic poisoning. Water-soluble analogs of dimercaprol—unithiol and succimer—have higher therapeutic indices and have replaced dimercaprol in many settings. [Pg.1240]


See other pages where Water solubility mercury is mentioned: [Pg.49]    [Pg.30]    [Pg.49]    [Pg.30]    [Pg.405]    [Pg.145]    [Pg.62]    [Pg.346]    [Pg.43]    [Pg.167]    [Pg.455]    [Pg.98]    [Pg.23]    [Pg.405]    [Pg.398]    [Pg.347]    [Pg.110]    [Pg.292]    [Pg.396]    [Pg.903]    [Pg.56]    [Pg.465]    [Pg.403]    [Pg.161]    [Pg.186]    [Pg.233]    [Pg.234]    [Pg.234]    [Pg.243]    [Pg.70]    [Pg.28]    [Pg.347]    [Pg.424]   
See also in sourсe #XX -- [ Pg.164 ]




SEARCH



Mercury solubility

Mercury water

© 2024 chempedia.info