Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water on Small Solar System Bodies

The group of small solar system bodies, SSSBs, comprises asteroids, comets and smaller objects. The most part of the smaller objects is concentrated in belts. The orbits of the objects of the Main Asteroid Belt between Mars and Jupiter and the Kuiper Belt outside the orbit of Neptune are concentrated near the ecliptic (plane of the solar system), the objects of the Oort cloud are distributed spherically and extend as far as to 50 000 AU from the Sun. [Pg.105]

Comets and asteroids consist mainly of unchanged remnant debris from the solar system formation process some 4.6 billion years ago. This and the fact that many impacts of these objects on terrestrial planets especially in the early solar system occurred explain the interest to study them. [Pg.105]


In August 2006, the International Astronomical Union redefined the term planet and decided that the former ninth planet in the solar system should be referred to as a dwarf planet with the number 134340. The dwarf planet Pluto and its moon, Charon, are the brightest heavenly bodies in the Kuiper belt (Young, 2000). The ratio of the mass of the planet to that of its moon is 11 1, so the two can almost be considered as a double planet system. They are, however, quite disparate in their composition while Pluto consists of about 75% rocky material and 25% ice, Charon probably contains only water ice with a small amount of rocky material. The ice on Pluto is probably made up mainly of N2 ice with some CH4 ice and traces of NH3 ice. The fact that Pluto and Charon are quite similar in some respects may indicate that they have a common origin. Brown and Calvin (2000), as well as others, were able to obtain separate spectra of the dwarf planet and its moon, although the distance between the two is only about 19,000 kilometres. Crystalline water and ammonia ice were identified on Charon it seems likely that ammonia hydrates are present. [Pg.58]

Meteorites provide perhaps the best record of the chemical evolution of small bodies in the Solar System, and this record is supplemented by asteroidal spectroscopy. Meteorites show progressive degrees of thermal processing on their parent asteroids, from primitive carbonaceous chondrites that contain percent-level quantities of water, through ordinary chondrites that show a wide range of degree of thermal metamorphism, to the achondrites that have been melted and differentiated. [Pg.318]

There are many icy bodies in addition to comets in the solar system they are icy satellites and Kuiper belt objects. Icy satellites of the Jupiter and Saturn systems were observed by spacecraft to clarify their densities and surface compositions. As a result, it is widely accepted that the main component of icy satellites is water ice, and the existence of water ice is confirmed by the observation of near infrared reflectance spectra. Icy satellites were revealed to have various surface morphologies and geologic activities depending on their origin and the thermal evolution process. Most of the icy satellites have densities from 1 to 2 g/cm which means that these bodies are a mixture of ices and silicates. Icy satellites were formed by collisional accretion of small porous bodies. These bodies could be ice-silicate mixture and the porosity was corrupted according to their growth. Therefore, impact properties of an ice-silicate mixture with various porosities are necessary to be clarified in order to study the formation process of icy satellites. I review systematic experimental results on impact of ice-silicate mixture in Section 3. [Pg.14]


See other pages where Water on Small Solar System Bodies is mentioned: [Pg.105]    [Pg.106]    [Pg.108]    [Pg.110]    [Pg.112]    [Pg.114]    [Pg.116]    [Pg.118]    [Pg.120]    [Pg.122]    [Pg.124]    [Pg.126]    [Pg.105]    [Pg.106]    [Pg.108]    [Pg.110]    [Pg.112]    [Pg.114]    [Pg.116]    [Pg.118]    [Pg.120]    [Pg.122]    [Pg.124]    [Pg.126]    [Pg.513]    [Pg.631]   


SEARCH



Body system

Small system

Small water bodies

Solar system

Solar-system bodies

Water bodies

© 2024 chempedia.info