Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water ionic dissolution

Kw ionic product of water Ka = dissolution constant of weak acid ... [Pg.599]

In ionic block copolymers, micellization occurs in a solvent that is selective for one of the blocks, as for non-ionic block copolymers. However, the ionic character of the copolymer introduces a new parameter governing the structure and properties of micellar structures. In particular, the ionic strength plays an important role in the conformation of the copolymer, and the presence of a high charge density leads to some specific properties unique to ionic block copolymers. Many of the studies on ionic block copolymers have been undertaken with solvents selective for the ionic polyelectrolyte block, generally water or related solvents, such as water-methanol mixtures. However, it has been observed that it is often difficult to dissolve ionic hydrophilic-hydrophobic block copolymers in water. These dissolution problems are far more pronounced than for block copolymers in non-aqueous selective solvents, although they do not always reflect real insolubility. In many cases, dissolution can be achieved if a better solvent is used first and examples of the use of cosolvents are listed by Selb and Gallot (1985). [Pg.182]

Dissolution of ionic and ionizable solutes in water is favored by ion—dipole bonds between ions and water. Figure 6 illustrates a hydrated sodium ion,... [Pg.210]

The properties of water near ionic salt surfaces are of interest not only for the understanding of the mechanism of dissolution processes but also for the understanding of the chemistry in the atmosphere next to oceans [205]. Experiments in UHV [205-208] indicate that the water-covered NaCl surface is quite stable at low temperatures. An early simulation study by Anastasiou et al. [209] focused on the arrangements and orientations of water molecules in contact with a rigid NaCl crystal. Ohtaki and coworkers investigated the dissolution of very small cubic crystals of NaF, KF, CsF, LiCl, NaCl, and KCl [210] and the nucleation [211] of NaCl and CsF in a... [Pg.376]

In addition to simple dissolution, ionic dissociation and solvolysis, two further classes of reaction are of pre-eminent importance in aqueous solution chemistry, namely acid-base reactions (p. 48) and oxidation-reduction reactions. In water, the oxygen atom is in its lowest oxidation state (—2). Standard reduction potentials (p. 435) of oxygen in acid and alkaline solution are listed in Table 14.10- and shown diagramatically in the scheme opposite. It is important to remember that if or OH appear in the electrode half-reaction, then the electrode potential will change markedly with the pH. Thus for the first reaction in Table 14.10 O2 -I-4H+ -I- 4e 2H2O, although E° = 1.229 V,... [Pg.628]

Similar observations hold for solubility. Predominandy ionic halides tend to dissolve in polar, coordinating solvents of high dielectric constant, the precise solubility being dictated by the balance between lattice energies and solvation energies of the ions, on the one hand, and on entropy changes involved in dissolution of the crystal lattice, solvation of the ions and modification of the solvent structure, on the other [AG(cryst->-saturated soln) = 0 = A/7 -TA5]. For a given cation (e.g. K, Ca +) solubility in water typically follows the sequence... [Pg.823]

MF < MC1 < MBr < MI . By contrast for less-ionic halides with significant non-coulombic lattice forces (e.g. Ag) solubility in water follows the reverse sequence MI < MBr < MC1 < MF . For molecular halides solubility is determined principally by weak intermolecular van der Waals and dipolar forces, and dissolution is commonly favoured by less-polar solvents such as benzene, CCI4 or CS2. [Pg.824]

The only reports of directed synthesis of coordination complexes in ionic liquids are from oxo-exchange chemistry. Exposure of chloroaluminate ionic liquids to water results in the formation of a variety of aluminium oxo- and hydroxo-contain-ing species [4]. Dissolution of metals more oxophilic than aluminium will generate metal oxohalide species. FFussey et al. have used phosgene (COCI2) to deoxochlori-nate [NbOa5] - (Scheme 6.1-1) [5]. [Pg.289]

Molecular Aspects on the Dissolution and Nucleation of Ionic Crystals in Water... [Pg.512]

FIG. 32 Top Semilog plot of the time constant t for ionic motion as a function of RH for KF. Bottom Simultaneously measured contact potential. At a critical humidity A, there is a break or a change in slope in these two surface properties. Below A, water solvates preferentially cations at the step edges. Above A, the rates of dissolution (solvation) of anions and cations are similar and water uni-... [Pg.280]

Dissolution of an ionic salt is essentially a separation process carried out by the interaction of the salt with water molecules. The separation is relatively easy in water because of its high dielectric constant. Comparison of the energies needed to separate ions of NaCl from 0-2 nm to infinity shows that it takes 692-89 kJ mol" in vacuum, but only 8-82 kJ moF in aqueous solution (Moore, 1972). Similar arguments have been used to try to estimate solvation energies of ions in aqueous solution, but there are difficulties caused by the variations in dielectric constant in the immediate vicinity of individual ions. [Pg.41]

Water is the most common solvent used to dissolve ionic compounds. Principally, the reasons for dissolution of ionic crystals in water are two. Not stated in any order of sequence of importance, the first one maybe mentioned as the weakening of the electrostatic forces of attraction in an ionic crystal known, and the effect may be alternatively be expressed as the consequence of the presence of highly polar water molecules. The high dielectric constant of water implies that the attractive forces between the cations and anions in an ionic salt come down by a factor of 80 when water happens to be the leaching medium. The second responsible factor is the tendency of the ionic crystals to hydrate. [Pg.467]

Table 5.1 Thermodynamics of dissolution processes of ionic salts in water at 25 °C. Table 5.1 Thermodynamics of dissolution processes of ionic salts in water at 25 °C.
Taking all the aspects considered thus far, the dissolution process of an ionic salt MX(s) in plain water categorized as a physical process may be represented in the manner presented below ... [Pg.469]

The composition and properties of the ions contained in the solution are not the same as those of ions contained in the ionic crystal lattice. It is already known that anhydrous copper sulfate (CuS04) is colorless. This implies that Cu2+ and SCT ions that make up the crystal lattice of the sulfate are colorless. When the Cu2+ ions combine with water molecules during dissolution they turn blue (the color characteristic of copper salt). This color is therefore due to hydrated ions of copper, i.e., ions connected with the water molecules. [Pg.471]

The speed of agitation governs the rate. The boundary layer thickness decreases at high speeds. A physical process such as the dissolution of an ionic salt in plain water is associated with an activation energy of the order of less than about 5 kcal mol-1. The influence of temperature on physical processes is less pronounced than that from agitation. [Pg.472]

Physical Ionic solid Dissolution is based on hydration Sodium chloride in water NaCl + (x + y)H20—>Na(H20)J + C1(H20) ... [Pg.472]

An instant ice pack for first-aid treatment uses the endothermic nature of the dissolution of an ionic salt in water to provide cold therapy. Two typical materials that absorb heat as they dissolve in water are ammonium nitrate and ammonium chloride ... [Pg.135]

Figure 2.9 The dissolution of an ionic solid in water, showing the hydration of... Figure 2.9 The dissolution of an ionic solid in water, showing the hydration of...

See other pages where Water ionic dissolution is mentioned: [Pg.14]    [Pg.40]    [Pg.9]    [Pg.62]    [Pg.147]    [Pg.9]    [Pg.373]    [Pg.44]    [Pg.436]    [Pg.445]    [Pg.547]    [Pg.209]    [Pg.210]    [Pg.116]    [Pg.15]    [Pg.408]    [Pg.966]    [Pg.142]    [Pg.137]    [Pg.211]    [Pg.46]    [Pg.226]    [Pg.467]    [Pg.697]    [Pg.142]    [Pg.155]    [Pg.21]    [Pg.83]    [Pg.206]    [Pg.66]   
See also in sourсe #XX -- [ Pg.12 ]




SEARCH



Dissolution of Ionic Solids in Water

Molecular Aspects on the Dissolution and Nucleation of Ionic Crystals in Water

Water dissolution

© 2024 chempedia.info