Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water diamagnetism

M.p. 23°C quite unstable decomposes within a few hours even at 0°C decomposes explosively to S and N at 100°C soluble in many organic solvents insoluble in water hydrolyzes slowly with water diamagnetic. [Pg.408]

Diamagnetic shielding factor, spherical water 1 + crCHjO) 1.000 025 64(7) ... [Pg.78]

Prussian Blue. Reaction of [Fe(CN)3] with an excess of aqueous h on(Ill) produces the finely divided, intensely blue precipitate Pmssian Blue [1403843-8] (tetrairon(Ill) tris(hexakiscyanoferrate)), Fe4[Fe(CN)3]. Pmssian Blue is identical to Turnbull s Blue, the name which originally was given to the material produced by reaction of [Fe(CN)3] with excess aqueous h on(Il). The soHd contains or has absorbed on its surface a large and variable number of water molecules, potassium ions (if present in the reaction), and h on(Ill) oxide. The h on(Il) centers are low spin and diamagnetic h on(Ill) centers are high spin. Variations of composition and properties result from variations in reaction conditions. Rapid precipitation in the presence of potassium ion affords a colloidal suspension of Pmssian Blue [25869-98-1] which has the approximate composition KFe[Fe(CN)3]. Pmssian Blue compounds are used as pigments in inks and paints and its formation on sensitized paper is utilized in the production of blueprints. [Pg.435]

AH the peroxides are colorless and diamagnetic when pure. Traces of the superoxide in technical-grade sodium peroxide impart a yellow color. Storage containers must be sealed to prevent reaction with atmospheric carbon dioxide and water vapor. [Pg.487]

The physical properties of bismuth, summarized ia Table 1, are characterized by a low melting poiat, a high density, and expansion on solidification. Thermochemical and thermodynamic data are summarized ia Table 2. The soHd metal floats on the Hquid metal as ice floating on water. GaUium and antimony are the only other metals that expand on solidification. Bismuth is the most diamagnetic of the metals, and it is a poor electrical conductor. The thermal conductivity of bismuth is lower than that of any other metal except mercury. [Pg.122]

Planar-octahedral equilibria. Dissolution of planar Ni compounds in coordinating solvents such as water or pyridine frequently leads to the formation of octahedral complexes by the coordination of 2 solvent molecules. This can, on occasions, lead to solutions in which the Ni has an intermediate value of jie indicating the presence of comparable amounts of planar and octahedral molecules varying with temperature and concentration more commonly the conversion is complete and octahedral solvates can be crystallized out. Well-known examples of this behaviour are provided by the complexes [Ni(L-L)2X2] (L-L = substituted ethylenediamine, X = variety of anions) generally known by the name of their discoverer I. Lifschitz. Some of these Lifschitz salts are yellow, diamagnetic and planar, [Ni(L-L)2]X2, others are blue, paramagnetic, and octahedral, [Ni(L-L)2X2] or... [Pg.1160]

Aqua Magnetics provide heavy industrial permanent magnetic power units that have been developed from a patented diamagnetic theory. The units are clustered around the raw water pipe. [Pg.339]

The nickel(II) dithiocarbamate complexes are neutral, water-insoluble, usually square-planar, species, and they have been studied extensively by a range of physical techniques. The usual methods for the synthesis of dithiocarbamate complexes have been employed in the case of Ni(II), Pd(II), and Pt(II). In addition, McCormick and co-workers (330,332) found that CS2 inserted into the Ni-N bonds of [Ni(aziri-dine)4P+, [Nilaziridinelgf, and [Ni(2-methylaziridine)4] to afford dithiocarbamate complexes. The diamagnetic products are probably planar, but they have properties typical of dithiocarbamate complexes, and IR- and electronic-spectral measurements suggested that they may be examples of N,S-, rather than S,S-, bonded dithiocarbamates. The S,S-bonded complexes are however, obtained, by a slow rearrangement in methanol. The optically active lV-alkyl-iV(a-phenethyl)dithio-carbamates of Ni(II), Pd(II), and Cu(II) (XXIV) have been synthesized, and the optical activity was found to be related to the anisotropy of the charge-transfer transitions (332). [Pg.254]

A ruthenium porphyrin hydride complex was lirst prepared by protonation of the dianion, [Ru(TTP) in THF using benzoic acid or water as the proton source. The diamagnetic complex, formulated as the anionic Ru(If) hydride Ru(TTP)(H )(THF)l , showed by H NMR spectroscopy that the two faces of the porphyrin were not equivalent, and the hydride resonance appeared dramatically shifted upheld to —57.04 ppm. The hydride ligand in the osmium analogue resonates at —66.06 ppm. Reaction of [Ru(TTP)(H)(THF)j with excess benzoic-acid led to loss of the hydride ligand and formation of Ru(TTP)(THF)2. [Pg.278]

By NMR, it has been observed that the solubilization of various diamagnetic salts in water/AOT/n-octane microemulsions induces a micellar reorganization that is dependent on the electrolyte valence and concentration [133]. [Pg.485]

A diamagnetic body such as a droplet of water has, by its very definition, negative magnetic susceptibility. In the presence of a magnetic field, a force acts on the body when the scale of the magnetic-field... [Pg.382]

Simple transition metal halides react cleanly with alkali metal boratabenzenes. In this way sandwich-type complexes 32 of V (27), Cr (64), Fe (58), Ru (61), and Os (61) have been made. The corresponding nickel complexes seem to be nonexistent, quite in contrast to NiCp2 in attempted preparations, mixtures of diamagnetic C—C linked dimers were obtained (29). In the manganese case, high sensitivity to air and water has precluded preparative success until now. Some organometallic halides have added further variations to the main theme. The complexes 33 of Rh and 34 of Pt were obtained from [(COD)RhCl]2 and [Me3PtI]4, respectively (61). [Pg.219]

Biomolecular spectroscopy on frozen samples at cryogenic temperatures has the distinct disadvantage that the biomolecules are in a state that is not particularly physiological. Recall that EPR spectroscopy is done at low temperatures to sharpen-up spectra by slowing down relaxation, to increase amplitude by increasing Boltzmann population differences, and to decrease diamagnetic absorption of microwaves by changing from water to ice. Certain S = 1/2 systems, notably radicals and a few mononuclear metal ions, have sufficiently slow relaxation, and sufficiently limited spectral anisotropy to allow their EPR detection in the liquid phase at ambient temperatures, be it in aqueous samples of reduced size. [Pg.167]

H2, hydrogen, is a colorless, odorless, tasteless, nonpolar, diamagnetic, diatomic gas with the lowest atomic weight and density of any known substance. It has low solubility in water and is very flammable. Hydrogen is prepared by reactions of metals with water, steam or various acids, electrolysis of water, the water gas reaction and thermal cracking of hydrocarbons. It combines with metals and nonmetals to form hydrides. [Pg.85]

Supercritical water reactions, 24 16-17 Supercurrents, diamagnetic and paramagnetic, 23 802-803 Superdex, 3 839 Superdislocation, 13 499 Superdispersants, 3 677 Superduplex stainless steels... [Pg.908]


See other pages where Water diamagnetism is mentioned: [Pg.257]    [Pg.12]    [Pg.391]    [Pg.576]    [Pg.605]    [Pg.852]    [Pg.992]    [Pg.1213]    [Pg.83]    [Pg.94]    [Pg.256]    [Pg.33]    [Pg.36]    [Pg.9]    [Pg.178]    [Pg.320]    [Pg.393]    [Pg.479]    [Pg.177]    [Pg.383]    [Pg.851]    [Pg.170]    [Pg.174]    [Pg.105]    [Pg.98]    [Pg.77]    [Pg.99]    [Pg.347]    [Pg.301]    [Pg.301]    [Pg.4]    [Pg.393]    [Pg.137]    [Pg.107]    [Pg.354]   
See also in sourсe #XX -- [ Pg.369 ]




SEARCH



Diamagnetic

Diamagnetic ions, water exchange

Diamagnetic susceptibility 2113 water

Diamagnetics

Diamagnetism

Diamagnets

Water NMRD in diamagnetic systems

© 2024 chempedia.info