Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Voltammetry characterization applications

What benefits and drawbacks to these problems can one expect from the use of cyclic voltammetry instead of RDEV They are related. In a general case, the application of cyclic voltammetry will be more complicated, because playing with the scan rate, one can make the diffusion layer penetrate the film or remain outside, as is the case with RDEV. We have already seen a fruitful application of the first of these possibilities in the use of cyclic voltammetry to the characterization of electron hopping transport within the redox films (Section 4.3.4). In the second situation, cyclic voltammetry may replace RDEV in a manner similar to what has been seen in Section 4.3.2 Each time a term (1 — ///a) is encountered in the analysis, it suffices to replace it by... [Pg.290]

The experimental data verifying the dependencies of the formal potentials on ion parameters, as shown in Figs 4, 5, and 6 have been accessible only by application of voltammetry of immobilized particles [59], since that method is the only one that allows the study of different compounds that have been chemically synthesized and completely characterized to be measured under the very same conditions. This is not, or only to some extent possible with electrochemically prepared thin films on electrodes. [Pg.712]

Voltammetric current-potential curves are important in elucidating electrode processes. However, if the electrode process is complicated, they cannot provide enough information to interpret the process definitely. Moreover, they cannot give direct insight into what is happening on a microscopic or molecular level at the electrode surface. In order to overcome these problems, many characterization methods that combine voltammetry and non-electrochemical techniques have appeared in the last 20 years. Many review articles are available on combined characterization methods [10]. Only four examples are described below. For applications of these combined methods in non-aqueous solutions, see Chapter 9. [Pg.137]

A complete comprehension of Single Pulse electrochemical techniques is fundamental for the study of more complex techniques that will be analyzed in the following chapters. Hence, the concept of half-wave potential, for example, will be defined here and then characterized in all electrochemical techniques [1, 3, 8]. Moreover, when very small electrodes are used, a stationary current-potential response is reached. This is independent of the conditions of the system prior to each potential step and even of the way the current-potential was obtained (i.e., by means of a controlled potential technique or a controlled current one) [9, 10]. So, the stationary solutions deduced in this chapter for the current-potential curves for single potential step techniques are applicable to any multipotential step or sweep technique such as Staircase Voltammetry or Cyclic Voltammetry. Moreover, many of the functional dependences shown in this chapter for different diffusion fields are maintained in the following chapters when multipulse techniques are described if the superposition principle can be applied. [Pg.68]

All general typical variables considered in this chapter for a particular reaction scheme, for example the half-wave potential, are of fundamental interest for its characterization in any electrochemical technique. Moreover, as indicated in the previous chapter, all the current-potential expressions deduced here under stationary conditions (when microelectrodes are used) are applicable to any multipotential step or sweep electrochemical techniques like Staircase Voltammetry or Cyclic Voltammetry. [Pg.134]

In single step voltammetry, the existence of chemical reactions coupled to the charge transfer can affect the half-wave potential Ey2 and the limiting current l. For an in-depth characterization of these processes, we will study them more extensively under planar diffusion and, then, under spherical diffusion and so their characteristic steady state current potential curves. These are applicable to any electrochemical technique as previously discussed (see Sect. 2.7). In order to distinguish the different behavior of catalytic, CE, and EC mechanisms (the ECE process will be analyzed later), the boundary conditions of the three processes will be given first in a comparative way to facilitate the understanding of their similarities and differences, and then they will be analyzed and solved one by one. The first-order catalytic mechanism will be described first, because its particular reaction scheme makes it easier to study. [Pg.191]

Controlled potential electrolysis or coulometry can be used to generate radical ions in quantities sufficient for study by appropriate techniques such as optical or EPR spectroscopy. This method is routinely applied to characterize radical anions and has also been used extensively for studying radical cations. However, the application of eoulometric techniques to the study of strained ring compounds is severely limited, even more than the application of cyclic voltammetry, by the limited stability of their one-electron oxidation products. [Pg.136]

Twenty years ago the main applications of electrochemistry were trace-metal analysis (polarography and anodic stripping voltammetry) and selective-ion assay (pH, pNa, pK via potentiometry). A secondary focus was the use of voltammetry to characterize transition-metal coordination complexes (metal-ligand stoichiometry, stability constants, and oxidation-reduction thermodynamics). With the commercial development of (1) low-cost, reliable poten-tiostats (2) pure, inert glassy-carbon electrodes and (3) ultrapure, dry aptotic solvents, molecular characterization via electrochemical methodologies has become accessible to nonspecialists (analogous to carbon-13 NMR and GC/MS). [Pg.517]

Electrochemical calorimetry — is the application of calorimetry to thermally characterize electrochemical systems. It includes several methods to investigate, for instances, thermal effects in batteries and to determine the -> molar electrochemical Peltier heat. Instrumentation for electrochemical calorimetric studies includes a calorimeter to establish the relationship between the amount of heat released or absorbed with other electrochemical variables, while an electrochemical reaction is taking place. Electrochemical calorimeters are usually tailor-made for a specific electrochemical system and must be well suited for a wide range of operation temperatures and the evaluation of the heat generation rate of the process. Electrochemical calorimeter components include a power supply, a device to control charge and discharge processes, ammeter and voltmeter to measure the current and voltage, as well as a computerized data acquisition system [i]. In situ calorimetry also has been developed for voltammetry of immobilized particles [ii,iii]. [Pg.186]

The usefulness of cyclic voltammetry as a tool for characterization of noble metal catalysts has been demonstrated by several authors (14-17). The application of this method requires the metal/support system to be electrically conducting, the condition which has been shown to be fulfilled by the reduced Pt/Ti02/Ti samples (5). [Pg.220]

The origins of SECM homogeneous kinetic measurements can be found in the earliest applications of ultramicroelectrodes (UMEs) to profile concentration gradients at macroscopic (millimeter-sized) electrodes (1,2). The held has since developed considerably, such that short-lived intermediates in electrode reactions can now readily be identified by SECM under steady-state conditions, which would be difficult to characterize by alternative transient UME methods, such as fast scan cyclic voltammetry (8). [Pg.241]

Patolsky, K, Zayats, M., Katz, E., and Willner, I. (1999) Precipitation of an insoluble product on enzyme monolayer electrodes for biosensor applications Characterization by faradaic impedance spectroscopy, cyclic voltammetry, and microgravimetric quartz crystal microbalance analyses. Anal. Chem. 71, 3171-3180... [Pg.274]


See other pages where Voltammetry characterization applications is mentioned: [Pg.707]    [Pg.435]    [Pg.79]    [Pg.315]    [Pg.98]    [Pg.4]    [Pg.92]    [Pg.172]    [Pg.482]    [Pg.293]    [Pg.516]    [Pg.425]    [Pg.369]    [Pg.504]    [Pg.4]    [Pg.435]    [Pg.2895]    [Pg.361]    [Pg.198]    [Pg.552]    [Pg.74]    [Pg.425]    [Pg.488]    [Pg.171]    [Pg.305]    [Pg.149]    [Pg.33]    [Pg.40]    [Pg.293]    [Pg.202]    [Pg.837]    [Pg.994]    [Pg.2]    [Pg.36]    [Pg.654]    [Pg.283]   
See also in sourсe #XX -- [ Pg.527 , Pg.528 , Pg.529 ]




SEARCH



Applications voltammetry

© 2024 chempedia.info