Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Viscosity elements

Figure 16.4 illustrates the mechanical components of the oculomotor plant for horizontal eye movements, the lateral and medial rectus muscle, and the eyeball. The agonist muscle is modeled as a parallel combination of an active state tension generator Fag> viscosity element Bag> and elastic element TlT) connected to a series elastic element Rse- The antagonist muscle is similarly modeled as a parallel combination of an active state tension generator Tant> viscosity element Rant> and elastic element TlT) connected to a series elastic element Rse- The eyeball is modeled as a sphere with moment of inertia /p, connected to viscosity element Bp and elastic element Kp. The passive elasticity of each muscle is included in spring Kp for ease in analysis. Each of the elements defined in the oculomotor plant is ideal and linear. [Pg.258]

Viscosity additives are aliphatic polymers of high molecular weight whose main chain is flexible. It is known that in a poor solvent, interactions between the elements making up the polymer chain are stronger than interactions between the solvent and the chain (Quivoron, 1978), to the point that the polymer chain adopts a ball of yarn configuration. The macromolecules in this configuration occupy a small volume. The viscosity of a solution being related to the volume occupied by the solute, the effect of polymers on the viscosity in a poor solvent will be small. [Pg.355]

The paper discusses the application of dynamic indentation method and apparatus for the evaluation of viscoelastic properties of polymeric materials. The three-element model of viscoelastic material has been used to calculate the rigidity and the viscosity. Using a measurements of the indentation as a function of a current velocity change on impact with the material under test, the contact force and the displacement diagrams as a function of time are plotted. Experimental results of the testing of polyvinyl chloride cable coating by dynamic indentation method and data of the static tensile test are presented. [Pg.239]

The shear viscosity is an important property of a Newtonian fluid, defined in terms of the force required to shear or produce relative motion between parallel planes [97]. An analogous two-dimensional surface shear viscosity ij is defined as follows. If two line elements in a surface (corresponding to two area elements in three dimensions) are to be moved relative to each other with a velocity gradient dvfdx, the required force is... [Pg.118]

Furtlier details can be found elsewhere [20, 78, 82 and 84]. An approach to tire dynamics of nematics based on analysis of microscopic correlation fimctions has also been presented [85]. Various combinations of elements of tire viscosity tensor of a nematic define tire so-called Leslie coefficients [20, 84]. [Pg.2558]

Incorporation of viscosity variations in non-elastic generalized Newtonian flow models is based on using empirical rheological relationships such as the power law or Carreau equation, described in Chapter 1. In these relationships fluid viscosity is given as a function of shear rate and material parameters. Therefore in the application of finite element schemes to non-Newtonian flow, shear rate at the elemental level should be calculated and used to update the fluid viscosity. The shear rale is defined as the second invariant of the rate of deformation tensor as (Bird et at.., 1977)... [Pg.126]

The simplest case of fluid modeling is the technique known as computational fluid dynamics. These calculations model the fluid as a continuum that has various properties of viscosity, Reynolds number, and so on. The flow of that fluid is then modeled by using numerical techniques, such as a finite element calculation, to determine the properties of the system as predicted by the Navier-Stokes equation. These techniques are generally the realm of the engineering community and will not be discussed further here. [Pg.302]

Suppose we consider a spring and dashpot connected in series as shown in Fig. 3. 7a such an arrangement is called a Maxwell element. The spring displays a Hookean elastic response and is characterized by a modulus G. The dashpot displays Newtonian behavior with a viscosity 77. These parameters (superscript ) characterize the model whether they have any relationship to the... [Pg.158]

Next suppose we consider the effect of a periodically oscillating stress on a Voigt element of modulus G and viscosity 77. Remember from the last section that for a Voigt element the appUed stress equals the sum of the elastic and viscous responses of the model. Therefore, for a stress which varies periodically, Eq. (3.64) becomes... [Pg.174]

We defined the equation of motion as a general expression of Newton s second law applied to a volume element of fluid subject to forces arising from pressure, viscosity, and external mechanical sources. Although we shall not attempt to use this result in its most general sense, it is informative to consider the equation of motion as it applies to a specific problem the flow of liquid through a capillary. This consideration provides not only a better appreciation of the equation of... [Pg.598]

Because the reaction takes place in the Hquid, the amount of Hquid held in the contacting vessel is important, as are the Hquid physical properties such as viscosity, density, and surface tension. These properties affect gas bubble size and therefore phase boundary area and diffusion properties for rate considerations. Chemically, the oxidation rate is also dependent on the concentration of the anthrahydroquinone, the actual oxygen concentration in the Hquid, and the system temperature (64). The oxidation reaction is also exothermic, releasing the remaining 45% of the heat of formation from the elements. Temperature can be controUed by the various options described under hydrogenation. Added heat release can result from decomposition of hydrogen peroxide or direct reaction of H2O2 and hydroquinone (HQ) at a catalytic site (eq. 19). [Pg.476]

Because of the low viscosities of cryogenic Hquids, rolling element bearings seem better suited than hydrodynamic bearings for turbo pumps. AISI 440C stainless balls and rings generally are preferred for their corrosion resistance over the more commonly used AISI 52100 steel. [Pg.253]

Fig. 4. Typical design elements foi wet deagglomeiation in low viscosity systems (a) a high, ipm lotoi (shown below its normal position within stator) produces turbulence and cavitation as blades pass each other (b) a rotating disk creates a deep vortex to rapidly refresh the surface, and up- and downtumed teeth at the edge cause impact, turbulence, and sometimes cavitation and (c) the clearance of a high rpm rotor can be reduced as the batch... Fig. 4. Typical design elements foi wet deagglomeiation in low viscosity systems (a) a high, ipm lotoi (shown below its normal position within stator) produces turbulence and cavitation as blades pass each other (b) a rotating disk creates a deep vortex to rapidly refresh the surface, and up- and downtumed teeth at the edge cause impact, turbulence, and sometimes cavitation and (c) the clearance of a high rpm rotor can be reduced as the batch...
Co.). In direct contact with the scraped surface is the process fluid which may deposit ciystals upon chilling or be extremely fouhng or of very high viscosity. Motors, chain drives, appropriate guards, and so on are required for the rotating element. For chilling service with a refrigerant in the outer shell, an accumulator drum is mounted on top of the unit. [Pg.1063]

Motionless mixers continuously interchange fluid elements between the walls and the center of the conduit, thereby providing enhanced heat transfer and relatively uniform residence times. Distributive mixing is usually excellent however, dispersive mixing may be poor, especially when viscosity ratios are high,... [Pg.1650]


See other pages where Viscosity elements is mentioned: [Pg.121]    [Pg.18]    [Pg.490]    [Pg.121]    [Pg.18]    [Pg.490]    [Pg.89]    [Pg.5]    [Pg.79]    [Pg.97]    [Pg.125]    [Pg.622]    [Pg.347]    [Pg.87]    [Pg.208]    [Pg.65]    [Pg.246]    [Pg.273]    [Pg.543]    [Pg.288]    [Pg.296]    [Pg.192]    [Pg.474]    [Pg.764]    [Pg.883]    [Pg.160]    [Pg.335]    [Pg.334]    [Pg.157]    [Pg.457]    [Pg.549]    [Pg.175]    [Pg.744]   
See also in sourсe #XX -- [ Pg.47 ]

See also in sourсe #XX -- [ Pg.47 ]




SEARCH



© 2024 chempedia.info