Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Viscosity dependence, excited-state

The validity of the above conclusions rests on the reliability of theoretical predictions on excited state barriers as low as 1-2 kcal mol . Of course, this required as accurate an experimental check as possible with reference to both the solvent viscosity effects, completely disregarded by theory, and the dielectric solvent effects. As for the photoisomerization dynamics, the needed information was derived from measurements of fluorescence lifetimes (x) and quantum yields (dielectric constant, where extensive formation of ion pairs may occur [60], the observed photophysical properties are confidently referable to the unperturbed BMPC cation. Figure 6 shows the temperature dependence of the... [Pg.391]

Exciplexes are complexes of the excited fluorophore molecule (which can be electron donor or acceptor) with the solvent molecule. Like many bimolecular processes, the formation of excimers and exciplexes are diffusion controlled processes. The fluorescence of these complexes is detected at relatively high concentrations of excited species, so a sufficient number of contacts should occur during the excited state lifetime and, hence, the characteristics of the dual emission depend strongly on the temperature and viscosity of solvents. A well-known example of exciplex is an excited state complex of anthracene and /V,/V-diethylaniline resulting from the transfer of an electron from an amine molecule to an excited anthracene. Molecules of anthracene in toluene fluoresce at 400 nm with contour having vibronic structure. An addition to the same solution of diethylaniline reveals quenching of anthracene accompanied by appearance of a broad, structureless fluorescence band of the exciplex near 500 nm (Fig. 2 )... [Pg.195]

Molecular rotors are fluorophores characteristic for having a fluorescent quantum yield that strongly depends on the viscosity of the solvent [50], This property relies on the ability to resume a twisted conformation in the excited state (twisted intramolecular charge transfer or TICT state) that has a lower energy than the planar conformation. The de-excitation from the twisted conformation happens via a non-radiative pathway. Since the formation of the TICT state is favored in viscous solvents or at low temperature, the probability of fluorescence emission is reduced under those conditions [51]. Molecular rotors have been used as viscosity and flow sensors for biological applications [52], Modifications on their structure have introduced new reactivity that might increase the diversity of their use in the future [53] (see Fig. 6.7). [Pg.249]

In dynamic quenching (or diffusional quenching) the quenching species and the potentially fluorescent molecule react during the lifetime of the excited state of the latter. The efficiency of dynamic quenching depends upon the viscosity of the solution, the lifetime of the excited state (x ) of the luminescent species, and the concentration of the quencher [Q], This is summarized in the Stern-Volmer equation ... [Pg.75]

Dynamic quenching of fluorescence is described in Section 4.2.2. This translational diffusion process is viscosity-dependent and is thus expected to provide information on the fluidity of a microenvironment, but it must occur in a time-scale comparable to the excited-state lifetime of the fluorophore (experimental time window). When transient effects are negligible, the rate constant kq for quenching can be easily determined by measuring the fluorescence intensity or lifetime as a function of the quencher concentration the results can be analyzed using the Stern-Volmer relation ... [Pg.232]

The motions of chromophore groups and of their environment that lead to temperature-dependent fluorescence quenching are those on the nanosecond time scale. Slower motions cannot manifest themselves in effects on the excited-state lifetime (this corresponds to the limit of high viscosity). On the other hand, if the motions are considerably faster (on the picosecond time scale), then they should give rise to static quenching. [Pg.78]

Fluorescence is measured in dilute solution of model compounds for polymers of 2,6-naphthalene dicarboxylic acid and eight different glycols. The ratio of excimer to monomer emission depends on the glycol used. Studies as functions of temperature and solvent show that, in contrast with the analogous polyesters in which the naphthalene moiety is replaced with a benzene ring, there can be a substantial dynamic component to the excimer emission. Extrapolation to media of infinite viscosity shows that in the absence of rotational isomerism during the lifetime of the singlet excited state, there is an odd-even effect In the series in which the flexible spacers differ in the number of methylene units, but not in the series in which the flexible spacers differ in the number of oxyethylene units. [Pg.330]

As previously noted (see Section II.B.l), the A emission exhibits an important solvatochromic effect due to the appearance of a large dipole moment in the TICT state. The polar interactions between the solute molecule and the polar environment lead to the reorientation of the solvent molecules and to a relaxation of the electronic energy of the TICT state whose manifestation is a spectral shift during the lifetime of the excited state. The competition between the energy relaxation, whose dynamics is strongly viscosity dependent, and the deactivation of the TICT state has been made evident for DMABN78,89 ... [Pg.37]

In almost all cases the admixture of excited states is anisotropic that is, the observed g value varies according to the orientation of the paramagnetic species in relation to the applied magnetic field (orientation-dependent). The g-factor anisotropy is characterized by three principal g values, namely, gxx, gyy, and g--. When these three values are different, the symmetry is defined as rhombic and in the case of axial symmetry, gxx = gyy gzz. In the orientation-independent (isotropic) situation the g factor is represented by a single value. This is also true if the species paramagnetic is in a solution of low viscosity (water) where the molecular tumbling causes all the g factor anisotropy to be averaged out (Knowles et al., 1976 Campbell and Dwek, 1984). [Pg.654]

Figure 3.79. The viscosity dependence of the singlet excitation quantum yield given by Eq. (3.646) at different rate constants of recombination to the triplet state kt — 1011, 1010,10 ,M 1s 1 (from top to bottom). The points are the same as in Figure 3.78 and the excitation rate constant k = 8.8 x 108 M-1s-1. (From Ref. 231.)... Figure 3.79. The viscosity dependence of the singlet excitation quantum yield <f> given by Eq. (3.646) at different rate constants of recombination to the triplet state kt — 1011, 1010,10 ,M 1s 1 (from top to bottom). The points are the same as in Figure 3.78 and the excitation rate constant k = 8.8 x 108 M-1s-1. (From Ref. 231.)...

See other pages where Viscosity dependence, excited-state is mentioned: [Pg.5]    [Pg.56]    [Pg.163]    [Pg.267]    [Pg.268]    [Pg.357]    [Pg.230]    [Pg.236]    [Pg.237]    [Pg.257]    [Pg.79]    [Pg.121]    [Pg.348]    [Pg.661]    [Pg.442]    [Pg.63]    [Pg.1188]    [Pg.385]    [Pg.1188]    [Pg.176]    [Pg.196]    [Pg.426]    [Pg.59]    [Pg.183]    [Pg.258]    [Pg.191]    [Pg.115]    [Pg.199]    [Pg.458]    [Pg.252]    [Pg.275]    [Pg.6]    [Pg.928]    [Pg.314]    [Pg.145]    [Pg.412]    [Pg.166]    [Pg.69]   


SEARCH



State dependency

State-dependent

© 2024 chempedia.info