Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vinylidene chloride polymers monomer

Poly(vinyhdene chloride) (PVDC) film has exceUent barrier properties, among the best of the common films (see Barrier polymers). It is formulated and processed into a flexible film with cling and tacky properties that make it a useful wrap for leftovers and other household uses. As a component in coatings or laminates it provides barrier properties to other film stmctures. The vinyUdene chloride is copolymerized with vinyl chloride, alkyl acrylates, and acrylonitrile to get the optimum processibUity and end use properties (see Vinylidene chloride monomer and polymers). [Pg.378]

In addition to homopolymers of varying molecular and particle structure, copolymers are also available commercially in which vinyl chloride is the principal monomer. Comonomers used eommercially include vinyl acetate, vinylidene chloride, propylene, acrylonitrile, vinyl isobutyl ether, and maleic, fumaric and acrylic esters. Of these the first three only are of importance to the plastics industry. The main function of introducing comonomer is to reduce the regularity of the polymer structure and thus lower the interchain forces. The polymers may therefore be proeessed at much lower temperatures and are useful in the manufacture of gramophone records and flooring compositions. [Pg.325]

Copolymers of acrylonitrile and vinylidene chloride have been used for many years to produce films of low gas permeability, often as a coating on another material. Styrene-acrylonitrile with styrene as the predominant free monomer (SAN polymers) has also been available for a long time. In the 1970s materials were produced which aimed to provide a compromise between the very low gas permeability of poly(vinylidene chloride) and poly(acrylonitrile) with the processability of polystyrene or SAN polymers (discussed more fully in Chapter 16). These became known as nitrile resins. [Pg.416]

The polymer may be prepared readily in bulk, emulsion and suspension, the latter technique apparently being preferred on an industrial scale. The monomer must be free from oxygen and metallic impurities. Peroxide such as benzoyl peroxide are used in suspension polymerisations which may be carried out at room temperature or at slightly elevated temperatures. Persulphate initiators and the conventional emulsifying soaps may be used in emulsion polymerisation. The polymerisation rate for vinylidene chloride-vinyl chloride copolymers is markedly less than for either monomer polymerised alone. [Pg.467]

Up to this point we ve discussed only homopolymers—polymers that are made up of identical repeating units, in practice, however, copolymers are more important commercially. Copolymers are obtained when two or more different monomers are allowed to polymerize together. For example, copolymerization of vinyl chloride with vinylidene chloride (1,1-dichloroethylene) in a 1 4 ratio leads to the polymer Saran. [Pg.1210]

Polymerizations conducted in nonaqueous media in which the polymer is insoluble also display the characteristics of emulsion polymerization. When either vinyl acetate or methyl methacrylate is polymerized in a poor solvent for the polymer, for example, the rate accelerates as the polymerization progresses. This acceleration, which has been called the gel effect,probably is associated with the precipitation of minute droplets of polymer highly swollen with monomer. These droplets may provide polymerization loci in which a single chain radical may be isolated from all others. A similar heterophase polymerization is observed even in the polymerization of the pure monomer in those cases in which the polymer is insoluble in its own monomer. Vinyl chloride, vinylidene chloride, acrylonitrile, and methacryloni-trile polymerize with precipitation of the polymer in a finely divided dispersion as rapidly as it is formed. The reaction rate increases as these polymer particles are generated. In the case of vinyl chloride ... [Pg.216]

Adding plasticizer, like dioctyl phthalate, is generally accomplished by mechanical methods. Permanent or chemical plasticization can be done by copolymerization of VCM with monomers such as vinyl acetate, vinylidene chloride, methyl acrylate, or methyl rhethacrylate. Comonomer levels vary from 5-40%. The purpose of the co-polymers, of course, is to change the properties such as softening point, thermal stability, flexibility, tensile strength, and solubility. [Pg.349]

Acrylic fibers. Acrylic fibers are polymers of acrylonitrile and another chemical. When acrylonitrile is 85% or more of the polymer, the fiber is called acrylic. If there s more copolymer so the percentage of acrylonitrile decreases to 35-85%, the fiber is called modacrylic. Some of the popular monomers used as copolymers are methyl acrylate and methacrylate, acrylamide, vinyl acetate, vinylidene chloride, and vinyl chloride, Dynel is 40% acrylo and 60% vinyl chloride. [Pg.372]

The AH value for vinyl chloride is lowered relative to that for ethylene because of increased steric strain in the polymer and increased resonance stabilization of the monomer. However, it is not clear why AH for vinylidene chloride is not lower than that for vinyl chloride. The abnormally high AH for tetrafluoroethylene is difficult to understand. A possible explanation may involve increased stabilization of the polymer due to the presence of intermolecular association (dipole interaction). [Pg.277]

The photo-cross-linkability of a polymer depends not only on its chemical structure, but also on its molecular weight and the ordering of the polymer segments. Vinyl polymers, such as PE, PP, polystyrene, polyacrylates, and PVC, predominantly cross-link, whereas vinylidene polymers (polyisobutylene, poly-2-methylstyrene, polymethacrylates, and poly vinylidene chloride) tend to degrade. Likewise, polymers formed from diene monomers and linear condensation products, such as polyesters and polyamides, cross-link easily, whereas cellulose and cellulose derivatives degrade easily. ... [Pg.80]

Vinylidene chloride and chloroprene (Figures 7 and 8) under the given conditions produce curves which more or less resemble the styrene curve. Vinylidene chloride especially shows a long period of a rather constant reaction rate. By the theory of Harkins and Smith-Ewart this would be interpreted as a period of constant particle number and of constant monomer concentration at the reaction site—i.e., the monomer-polymer particles. The first assumption seems justified (15). The second assumption of constant monomer concentration at the reaction site can be true only in a modified sense because poly (vinylidene chloride) is insoluble in its monomer, and the monomer-polymer particles in this system therefore have a completely different structure as compared with the monomer-polymer particles in the styrene system. [Pg.205]

Acrylonitrile (Figure 9) shows two periods of almost constant but different absolute reaction rates, followed by a period of first-order reaction rate at a high conversion. This monomer is somewhat similar to vinylidene chloride since it also does not swell in its own polymer. On the other hand acrylonitrile has a water solubility roughly three orders of magnitude higher than vinylidene chloride or styrene and even higher than methyl acrylate (see Table I). We therefore have to assume particle formation in the aqueous phase, as was done for methyl acrylate emulsions. [Pg.207]

The conformational entropies of copolymer chains are calculated through utilization of semiempirical potential energy functions and adoption of the RIS model of polymers. It is assumed that the glass transition temperature, Tg, is inversely related to the intramolecular, equilibrium flexibility of a copolymer chain as manifested by its conformational entropy. This approach is applied to the vinyl copolymers of vinyl chloride and vinylidene chloride with methyl acrylate, where the stereoregularity of each copolymer is explicitly considered, and correctly predicts the observed deviations from the Fox relation when they occur. It therefore appears that the sequence distribution - Tg effects observed in many copolymers may have an intramolecular origin in the form of specific molecular interactions between adjacent monomer units, which can be characterized by estimating the resultant conformational entropy. [Pg.364]


See other pages where Vinylidene chloride polymers monomer is mentioned: [Pg.421]    [Pg.168]    [Pg.427]    [Pg.427]    [Pg.428]    [Pg.429]    [Pg.430]    [Pg.431]    [Pg.432]    [Pg.433]    [Pg.434]    [Pg.435]    [Pg.436]    [Pg.437]    [Pg.438]    [Pg.439]    [Pg.440]    [Pg.440]    [Pg.441]    [Pg.442]    [Pg.443]    [Pg.444]    [Pg.445]    [Pg.446]    [Pg.268]    [Pg.144]    [Pg.222]    [Pg.4]    [Pg.287]    [Pg.308]    [Pg.358]    [Pg.259]    [Pg.295]    [Pg.90]   


SEARCH



Polymers monomers

Vinylidene

Vinylidene chloride

Vinylidene chloride monomer

Vinylidene chloride monomer and polymers

Vinylidene chloride polymers

Vinylidene polymers

Vinylidenes

© 2024 chempedia.info