Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vinylic carbon, nucleophilic

Reactions of carbon nucleophiles with organohalogen compounds have great diversity for the construction of now carbon-carbon bonds. The intriguing synthon, ethoxyethynylsodium, is generated and alkylated in 1-ETHOXY-1-BUTANE. Following an alkylation of propynylsodium, a vinyl halide is generated in a stereoselective manner... [Pg.129]

Because of thetr electron deficient nature, fluoroolefms are often nucleophihcally attacked by alcohols and alkoxides Ethers are commonly produced by these addition and addition-elimination reactions The wide availability of alcohols and fliioroolefins has established the generality of the nucleophilic addition reactions The mechanism of the addition reaction is generally believed to proceed by attack at a vinylic carbon to produce an intermediate fluorocarbanion as the rate-determining slow step The intermediate carbanion may react with a proton source to yield the saturated addition product Alternatively, the intermediate carbanion may, by elimination of P-halogen, lead to an unsaturated ether, often an enol or vinylic ether These addition and addition-elimination reactions have been previously reviewed [1, 2] The intermediate carbanions resulting from nucleophilic attack on fluoroolefins have also been trapped in situ with carbon dioxide, carbonates, and esters of fluorinated acids [3, 4, 5] (equations 1 and 2)... [Pg.729]

Miller et al. [9] hypothesized rules on the regioselectivity of addition from the study of the base-catalyzed addition of alcohols to chlorotnfluoroethylene. Attack occurs at the vinylic carbon with most fluorines. Thus, isomers of dichloro-hexafl uorobutene react with methanol and phenol to give the corresponding saturated and vinylic ethers The nucleophiles exclusively attack position 3 of 1,1-dichloro-l,2,3,4,4,4-hexafluoro-2-butene and position I of 4,4-dichloro-l,l,2,3,3,4-hexafluoro-1-butene [10]. In I, l-dichloro-2,3,3,4,4,4-hexafluoro-l-butene, attack on position 2 is favored [J/] (equation 5) Terminal fluoroolefms are almost invariably attacked at tbe difluoromethylene group, as illustrated by the reaction of sodium methoxide with perfluoro-1-heptene in methanol [/2J (equation 6). [Pg.730]

Thus, like a, /1-unsaturated ketones and sulfones, both thiirene dioxides and thiirene oxides are preferentially attacked by the less basic nucleophiles on the vinylic carbon atom2. This would lead to formally 1,4 Michael-type adducts and/or other products resulting from further transformations following the initial formation of the a-sulfonyl and a-sulfoxy carbanions. [Pg.411]

The stereochemistry of the electrocyclic ring opening following the attack of the nucleophile on the vinylic carbon appears to be governed by the principle of least motion159,60. [Pg.422]

For trisubstituted olefins, the nucleophile attacks predominantly at the less substituted end of the allyl moiety, e.g. to afford a 78 22 mixture of 13 and 14 (equation 7). Both the oxidative addition of palladium(O) and the subsequent nucleophilic attack occur with inversion of configuration to give the product of net retention7. The synthesis of the sex pheromone 15 of the Monarch butterfly has been accomplished by using bis[bis(l,2-diphenylphosphinoethane)]palladium as a catalyst as outlined in equation 87. A substitution of an allyl sulfone 16 by a stabilized carbon nucleophile, such as an alkynyl or vinyl system, proceeds regioselectively in the presence of a Lewis acid (equation 9)8. The... [Pg.763]

All the mechanisms so far discussed take place at a saturated carbon atom. Nucleophilic substitution is also important at trigonal carbons, especially when the carbon is double bonded to an oxygen, a sulfur, or a nitrogen. Nucleophilic substitution at vinylic carbons is considered in the next section at aromatic carbons in Chapter 13. [Pg.424]

Nucleophilic substitution at a vinylic carbon is difficult (see p. 433), but many examples are known. The most common mechanisms are the tetrahedral mechanism and the closely related addition-elimination mechanism. Both of these mechanisms are impossible at a saturated substrate. The addition-elimination mechanism has... [Pg.428]

This is reminiscent of the nucleophilic tetrahedral mechanism at a vinylic carbon (p. 429). [Pg.899]

Highly stabilized phosphorus ylides are prepared from acetylenic esters, a carbon-based nucleophile, and triphenylphosphine in aqueous media.40 In acetone-water (2 1) solvent, the reaction proceeds via the conjugate addition of triphenylphosphine to dialkyl acetylenedicarboxy-lates the resulting vinyl triphenylphosphonium salts undergo Michael addition reaction with a carbon-nucleophile to give the corresponding highly stabilized phosphorus ylides. [Pg.320]

Formation of C-C bonds remains the ultimate challenge to the synthetic chemist. The employment of new synthetic methods in complex target synthesis can be frustrated by a lack of functional group tolerance and substrate specificity. These problems can be somewhat alleviated within conjugate addition reactions by the use of secondary amine catalysts where a number of important and highly selective methods have been developed. Two principle classes of nucleophile have been shown to be effective in the iminium ion activated conjugate addition of carbon nucleophiles to a,P-unsaturated carbonyl systems aryl, heteroaromatic and vinyl... [Pg.295]

Nucleophilic substitutions at vinylic carbon atoms usually proceed with retention of con-flguration. See, for example G. Modena, Ace. Chem. Res. 4, 73 (1971). Rationales have been proposed by W. D. Stohrer, Tetrahedron Lett., 207 (1975) S. I. Miller, Tetrahedron 33, 1211 (1977)... [Pg.108]

Unsaturated fluorinated compounds are fundamentally different from those of hydrocarbon chemistry. Whereas conventional alkenes are electron rich at the double bond, fluoroal-kenes suffer from a deficiency of electrons due to the negative inductive effect. Therefore, fluoroalkenes react smoothly in a very typical way with oxygen, sulfur, nitrogen and carbon nucleophiles.31 Usually, the reaction path of the addition or addition-elimination reaction goes through an intermediate carbanion. The reaction conditions decide whether the product is saturated or unsaturated and if vinylic or allylic substitution is required. Highly branched fluoroalkenes, obtained from the fluoride-initiated ionic oligomerization of tetrafluoroethene or hexafluoropropene, are different and more complex in their reactions and reactivities. [Pg.23]

More reactive carbon nucleophiles than enolates can also be prepared on insoluble supports (see Chapter 4) and are used to convert aldehydes or ketones into alcohols. Organolithium compounds have been generated on cross-linked polystyrene by deprotonation of formamidines and by metallation of aryl iodides (Table 7.5). Similarly, support-bound organomagnesium compounds can be prepared by metallation of aryl and vinyl iodides with Grignard reagents. The resulting organometallic compounds react with aldehydes or ketones to yield the expected alcohols (Table 7.5). [Pg.219]

The same ethylidene ruthenium complex, as well as its iron congener, is alternatively obtained through direct protonation of the dimetallacycles 64a (M = Fe) and 64b (M = Ru) (64). In this case, the carbonyl alkyne carbon-carbon bond is broken irreversibly to give the cationic /x, 17s-vinyl complexes 65a and 65b, which undergo nucleophilic attack by hydride (NaBFLi) to produce complexes of methylcarbene (63a,b) (Scheme 21a). Deuterium-labeling experiments prove that the final compounds arise from initial hydride addition to the /3-vinylic carbon of 65. However, isolation of small amounts of the 7j2-ethylene complex 66 indicates that hydride attack can also occur at the a-vinylic carbon (64). [Pg.188]

Since early investigations about the asymmetric addition of diethyl sodiomalonate to optically active vinylic sulfoxides,100-101 Posner and his coworkers102-117 have developed a highly useful methodology based on the conjugate addition of carbon nucleophiles to homochiral a-arylsulfinyl-a,(J-unsaturated carbonyl compounds. While acyclic derivatives still lead only to moderate results,103 the strength of this method is for cyclic systems. For example, the 2-sulfinyl-2-cycloalkenones (94) and (95), the 2-sulfinyl-2-alkenolides (96) and (97), as well as their respective enantiomers are excellent substrates. All these compounds are quite readily accessible in enantiomeric purities of >98% and are configurationally stable, at least for several months at 0 C. [Pg.213]


See other pages where Vinylic carbon, nucleophilic is mentioned: [Pg.310]    [Pg.224]    [Pg.290]    [Pg.178]    [Pg.664]    [Pg.35]    [Pg.411]    [Pg.428]    [Pg.258]    [Pg.411]    [Pg.887]    [Pg.555]    [Pg.30]    [Pg.158]    [Pg.24]    [Pg.30]    [Pg.802]    [Pg.162]    [Pg.166]    [Pg.335]    [Pg.124]    [Pg.46]   


SEARCH



Carbon nucleophile

Carbon nucleophiles

Carbon nucleophiles vinyl halide/triflates

Nucleophilic scale toward vinylic carbon

Nucleophilic substitution at a vinylic carbon

Vinyl carbon

Vinyl carbon nucleophiles, Michael addition

Vinyl carbonates

Vinylic carbon

Vinylic carbon, nucleophilic displacement

Vinylic carbon, nucleophilic substitution

Vinylic carbon, quantitative nucleophilicity

© 2024 chempedia.info