Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vinyl sulfones, addition

Condensation of vinyl chloride with formaldehyde and HCl (Prins reaction) yields 3,3-dichloro-l-propanol [83682-72-8] and 2,3-dichloro-l-propanol [616-23-9]. The 1,1-addition of chloroform [67-66-3] as well as the addition of other polyhalogen compounds to vinyl chloride are cataly2ed by transition-metal complexes (58). In the presence of iron pentacarbonyl [13463-40-6] both bromoform [75-25-2] CHBr, and iodoform [75-47-8] CHl, add to vinyl chloride (59,60). Other useful products of vinyl chloride addition reactions include 2,2-di luoro-4-chloro-l,3-dioxolane [162970-83-4] (61), 2-chloro-l-propanol [78-89-7] (62), 2-chloropropionaldehyde [683-50-1] (63), 4-nitrophenyl-p,p-dichloroethyl ketone [31689-13-1] (64), and p,p-dichloroethyl phenyl sulfone [3123-10-2] (65). [Pg.415]

Fiber-Reactive Dyes. These dyes can enter iato chemical reaction with the fiber and form a covalent bond to become an iategral part of the fiber polymer. They therefore have exceptional wetfastness. Thein main use is on ceUulosic fibers where they are appHed neutral and then chemical reaction is initiated by the addition of alkaH. Reaction with the ceUulose can be by either nucleophilic substitution, using, for example, dyes containing activated halogen substituents, or by addition to the double bond in, for example, vinyl sulfone, —S02CH=CH2, groups. [Pg.349]

However, when the bulky substituent is no longer present at the electrophilic carbon atom, the addition of the olefin to the morpholine enamine of cyclohexanone leads largely to the tetrasubstituted isomer. For instance the reaction of this enamine with phenyl vinyl sulfone gave a 1 3 mixture of... [Pg.13]

The enamines derived from cyclic ketones give the normal alkylated products, although there is some evidence that unstable cycloadducts are initially formed (55b). Thus the enamine (28) derived from cyclohexanone and pyrrolidine on reaction with acrylonitrile, acrylate esters, or phenyl vinyl sulfone gave the 2-alkylated cyclohexanones (63) on hydrolysis of the intermediates (31,32,55,56). These additions are sensitive to the polarity of the solvent. Thus (28) in benzene or dioxane gave an 80% yield of the... [Pg.127]

Addition of methyllithium to an enantiomerically pure vinyl sulfone to give the yv -adduct was a key step in the total synthesis of (-)-maytansinol14. [Pg.1036]

The addition reactions of alkyllithium-lithium bromide complexes to a-trimethylsilyl vinyl sulfones that have as a chiral auxiliary a y-mono-thioacetal moiety derived from ( + )-camphor are highly diastereoselective. A transition state that involves chelation of the organolithium reagent to the oxygen of the thioacetal moiety has been invoked. The adducts are readily converted via hydrolysis, to chiral a-substituted aldehydes22. [Pg.1039]

Base-induced eliminative ring fission, in which both the double bond and the sulfone function take part, has been observed in thiete dioxides253. The reaction can be rationalized in terms of initial Michael-type addition to the double bond of the ring vinyl sulfone, followed by a reverse aldol condensation with ring opening. The isolation of the ether 270c in the treatment of 6c with potassium ethoxide (since the transformation 267 -> 268 is not possible in this case) is in agreement with the reaction mechanism outlined in equation 101253. [Pg.455]

McDowell and Stirling194 studied electronic effects upon the reactivity of aryl vinyl sulfones towards amines. Rate constants for t-butylamine addition in ethanol at 25 °C were well correlated by the Hammett equation, with p = 1.59. Comparison of this with p values for H-D exchange mentioned above191 suggested considerable carbanionic character in the transition state, perhaps in a concerted mechanism. Rates of addition of amines to alkenyl, allenyl and alkynyl p-tolyl sulfones have also been measured195. [Pg.527]

Vinyl sulfones, being good Michael acceptors, have been regarded as useful reagents for carbon-carbon bond formation. Nucleophiles used often are organometallic reagents, enamines and enolate anions and the Michael addition products are usually obtained in... [Pg.642]

Treatment of a-lithionitriles with vinylic sulfones resulted in the formation of cyclized products, i.e., 3-oxothian-l, 1-dioxides 346 or cyclopropane derivatives 348. When a-lithiated aliphatic nitriles were used, carbanions 343, formed by the nucleophilic addition,... [Pg.647]

Normant and coworkers50a have recently studied the intramolecular addition of nucleophiles to vinyl sulfones. The presence of the sulfonyl group in equations 58 and 59 is essential for the disfavored 5-endo-trigonal closure5013. In contrast, the corresponding sulfoxide gives no cyclic product when treated with potassium hydride and only decomposition occurs. [Pg.776]

Cory and Renneboog53 have devised an efficient bicycloannulation for the synthesis of tricyclo[3.2.1.02,7]octane-6-one (66) as shown in equation 63. The method involves three steps (1) the enolate undergoes an initial conjugate addition to phenyl vinyl sulfone, (2) the resulting sulfone-stabilized carbanion undergoes an intramolecular Michael addition to the enone, and (3) the resulting enolate displaces phenylsulfinyl moiety from the tricyclooctanone. The amount of HMPA (3 mol equivalents) is critical for effective cyclization of the enolate. [Pg.778]

An example for synthesis of the chiral [l-keto ester 69 is illustrated in equation 64. It involves conjugate addition of the dipotassium / -keto ester 68 to vinyl sulfone 67 followed by in situ quenching with allyl bromide54. The method provides a new procedure to sevenring annulation product 70 that is a potential precursor for (l)-(-)-cytochalasin C. [Pg.778]

The stereoselective conjugate addition of lithium (Z)-dialkenylcuprates to vinyl sulfones gives (Z)-olefms in the range of 70-80% overall yield and no ( )-isomer is detected (equation 66)56. The degree of stereoselectivity is higher than 90%. [Pg.779]

The conjugate addition of 103 to phenyl vinyl sulfone (53) proceeds under phase-transfer conditions. The yield of cyclopropanes in the following cyclization is low for synthetic purposes (equation 84)69. [Pg.785]

The addition of 10-mercaptoisoborneol to (phenylsulfonyl)acetylene proceeds smoothly in the presence of morpholine as a catalyst to give the (Z)-vinyl sulfone 127 (equation 98)82. [Pg.790]

Recent synthetic applications of the photochemical [2 + 2] cycloaddition of unsaturated sulfones have been noted. Musser and Fuchs84 have effected an intramolecular [2 + 2] addition of a 6-membered ring vinyl sulfone and a five-membered ring vinylogous ester in excellent yield, as part of a synthetic approach to the synthesis of the mould metabolite, cytochalasin C. The stereospecificity of the addition was only moderate, however, and later problems with this synthetic approach led to its abandonment. Williams and coworkers85 have used the facile [2 + 2] photoaddition of 73 and... [Pg.885]

Free-radical addition of Se-phenyl areneselenosulfonates to acetylenes is also a facile process, occurring regiospecifically and stereoselectively to afford the E-isomer of a -(phenylseleno) vinyl sulfone (26) in high yield88. [Pg.1108]

Radical-mediated silyldesulfonylation of various vinyl and (a-fluoro)vinyl sulfones 21 with (TMSlsSiH (Reaction 25) provide access to vinyl and (a-fluoro)vinyl silanes 22. These reactions presumably occur via a radical addition of (TMSlsSi radical followed by /)-scission with the ejection of PhS02 radical. Hydrogen abstraction from (TMSlsSiH by PhS02 radical completes the cycle of these chain reactions. Such silyldesulfonylation provides a flexible alternative to the hydrosilylation of alkynes with (TMSlsSiH (see below). On oxidative treatment with hydrogen peroxide in basic aqueous solution, compound 22 undergoes Pd-catalyzed cross-couplings with aryl halides. [Pg.131]

As a consequence of facile homolytic cleavages, sulfonyl halides (I > Br > Cl F unsuitable) are able to add to unsaturated C—C systems. To prevent (or reduce) competing polymerizations, the additions of sulfonyl chlorides have been recommended to be carried out in the presence of copper(I/II) salts (Asscher-Vofsi reaction ). Comprehensive surveys have been published on the resulting j8-halogeno sulfones (or their vinyloguous compounds) as well as on their dehalogenation products (vinyl sulfones, 1-sulfonyl-l, 3-dienes, etc.). Table 5 reviews a series of sulfonyl halide additions and facile hydrogen halide eliminations. [Pg.189]

TABLE 6. Conjugate addition of organometallic reagents to vinyl sulfones ... [Pg.779]


See other pages where Vinyl sulfones, addition is mentioned: [Pg.415]    [Pg.415]    [Pg.356]    [Pg.189]    [Pg.191]    [Pg.527]    [Pg.645]    [Pg.647]    [Pg.695]    [Pg.783]    [Pg.789]    [Pg.1096]    [Pg.263]    [Pg.394]    [Pg.191]    [Pg.527]    [Pg.645]    [Pg.647]    [Pg.647]    [Pg.695]    [Pg.783]   
See also in sourсe #XX -- [ Pg.353 ]




SEARCH



Addition to Nitroolefins and Vinyl Sulfones

Addition to Vinyl Sulfones

Michael Additions to Vinyl Sulfones

Nitroalkene 1,1’-vinyl sulfone addition

Sulfones additions

Sulfones, a- vinyl phenyl addition reactions

Sulfones, vinyl Michael addition

Sulfones, vinyl addition reaction with enolates

Sulfones, vinyl heteroconjugate addition

Sulfonic esters, vinyl, addition

Sulfonic vinylation

Vinyl addition

Vinyl sulfonate

Vinyl sulfone

Vinyl sulfones

Vinyl sulfones electrophilic additions

Vinyl sulfones, addition reactions

© 2024 chempedia.info