Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vinyl regioselectivity

There also exists an acidregioselective condensation of the aldol type, namely the Mannich reaction (B. Reichert, 1959 H. Hellmann, 1960 see also p. 291f.). The condensation of secondary amines with aldehydes yields Immonium salts, which react with ketones to give 3-amino ketones (=Mannich bases). Ketones with two enolizable CHj-groupings may form 1,5-diamino-3-pentanones, but monosubstitution products can always be obtained in high yield. Unsymmetrical ketones react preferentially at the most highly substituted carbon atom. Sterical hindrance can reverse this regioselectivity. Thermal elimination of amines leads to the a,)3-unsaturated ketone. Another efficient pathway to vinyl ketones starts with the addition of terminal alkynes to immonium salts. On mercury(ll) catalyzed hydration the product is converted to the Mannich base (H. Smith, 1964). [Pg.57]

The stereospedfic and regioselective hydrobromination of alkynes with chlorobis(T -cyclopentadienyl)hydrozirconium and NBS produces ( )-vinylic bromides in good yields. The bromine atom usually adds regioselectively to the carbon atom that bears the smaller substituent and stereoselectively trans to the larger substituent (D.W. Hart, 1975 M. Nakatsuka,... [Pg.132]

Butyl vinyl ether reacts with aroyl chlorides using Pd(OAc)2 without a ligand to give the unsaturated ketone 839, which is a precursor of a 1-aryl-1,3-dicarbonyl compound. The reaction is regioselective /3-attack. Addition of PhjP inhibits the reaction[718]. [Pg.253]

Retrosynthetic path e in Scheme 2.2 requires a regioselective oxidation of an o-nitrostyrene to the corresponding phenylacetaldehyde. This transformation has been accomplished hy Wacker oxidation carried out in such a way as to ensure the desired regioselectivity. The required o-nitrostyrenes can be prepared by Heck vinylation. One procedure for oxidation uses 1,3-propaiiediol to trap the product as a l,3-dioxane[15]. These can then be hydrogenated over Rh/C and cyclized by treatment with dilute HCl,... [Pg.16]

This procedure illustrates a general method for the preparation of alkenes from the pal 1 adium(Q)-cata1yzed reaction of vinyl halides with organo-lithium compounds, which can be prepared by various methods, including direct regioselective lithiation of hydrocarbons. The method is simple and has been used to prepare a variety of alkenes stereoselectively. Similar stoichiometric organocopper reactions sometimes proceed in a nonstereoselective... [Pg.45]

Other limitations of the reaction are related to the regioselectivity of the aryl radical addition to double bond, which is mainly determined by steric and radical delocalization effects. Thus, methyl vinyl ketone gives the best results, and lower yields are observed when bulky substituents are present in the e-position of the alkene. However, the method represents complete positional selectivity because only the g-adduct radicals give reductive arylation products whereas the a-adduct radicals add to diazonium salts, because of the different nucleophilic character of the alkyl radical adduct. ... [Pg.70]

The regioselectivity of 1,3-dipolar cycloadditions can also be analyzed by MO calculations on transition-state models. For example, there are two possible regioisomers from the reaction of diazomethane and methyl vinyl ether, but only the 3-methoxy isomer is formed. [Pg.648]

Both stereoselectivity and regioselectivity occur in the reaction of steroid vinyl esters, ethers, and related compounds with A -fluoropyridinium salts [75, 7d] (equation 45). [Pg.157]

Miller et al. [9] hypothesized rules on the regioselectivity of addition from the study of the base-catalyzed addition of alcohols to chlorotnfluoroethylene. Attack occurs at the vinylic carbon with most fluorines. Thus, isomers of dichloro-hexafl uorobutene react with methanol and phenol to give the corresponding saturated and vinylic ethers The nucleophiles exclusively attack position 3 of 1,1-dichloro-l,2,3,4,4,4-hexafluoro-2-butene and position I of 4,4-dichloro-l,l,2,3,3,4-hexafluoro-1-butene [10]. In I, l-dichloro-2,3,3,4,4,4-hexafluoro-l-butene, attack on position 2 is favored [J/] (equation 5) Terminal fluoroolefms are almost invariably attacked at tbe difluoromethylene group, as illustrated by the reaction of sodium methoxide with perfluoro-1-heptene in methanol [/2J (equation 6). [Pg.730]

The regioselective arylation of butyl vinyl ether was carried out by the same group, using Pd(OAc)2 as catalyst precursor and l,3-bis(diphenylphosphino)-propane (dppp) as the ligand, dissolved in [BMIM][Bp4] (Scheme 5.2-17) [90]. [Pg.242]

Scheme 5.2-17 Pd-catalyzed, regioselective arylation of butyl vinyl ether in a [BMIM][BF4] ionic... Scheme 5.2-17 Pd-catalyzed, regioselective arylation of butyl vinyl ether in a [BMIM][BF4] ionic...
A valuable feature of the Nin/Crn-mediated Nozaki-Takai-Hiyama-Kishi coupling of vinyl iodides and aldehydes is that the stereochemistry of the vinyl iodide partner is reflected in the allylic alcohol coupling product, at least when disubstituted or trans tri-substituted vinyl iodides are employed.68 It is, therefore, imperative that the trans vinyl iodide stereochemistry in 159 be rigorously defined. Of the various ways in which this objective could be achieved, a regioselective syn addition of the Zr-H bond of Schwartz s reagent (Cp2ZrHCl) to the alkyne function in 165, followed by exposure of the resulting vinylzirconium species to iodine, seemed to constitute a distinctly direct solution to this important problem. Alkyne 165 could conceivably be derived in short order from compound 166, the projected product of an asymmetric crotylboration of achiral aldehyde 168. [Pg.606]

This strategy can be applied to the synthesis of vinylepoxides, since high enantioselectivity and good regioselectivity can often be obtained in asymmetric dihydroxylation of dienes, resulting in vinylic diols [24, 25], Transformation of the diols into epoxides thus represents an alternative route to vinylepoxides. This strategy was recently employed in the synthesis of (+)-posticlure (Scheme 9.6) [26]. [Pg.319]

For trisubstituted olefins, the nucleophile attacks predominantly at the less substituted end of the allyl moiety, e.g. to afford a 78 22 mixture of 13 and 14 (equation 7). Both the oxidative addition of palladium(O) and the subsequent nucleophilic attack occur with inversion of configuration to give the product of net retention7. The synthesis of the sex pheromone 15 of the Monarch butterfly has been accomplished by using bis[bis(l,2-diphenylphosphinoethane)]palladium as a catalyst as outlined in equation 87. A substitution of an allyl sulfone 16 by a stabilized carbon nucleophile, such as an alkynyl or vinyl system, proceeds regioselectively in the presence of a Lewis acid (equation 9)8. The... [Pg.763]

An unexpected varying regiochemistry in intramolecular benzannulation has also been observed in the synthesis of cyclophanes. As mentioned above, there are only two possible regiochemical outcomes in the benzannulation reaction, which differ in the direction of alkyne incorporation. / -Tethered vinyl-carbene chromium complexes undergo an intramolecular benzannulation reaction with incorporation of the tethered alkyne with normal regioselectivity to give meta-cyclophanes [28]. [Pg.132]

Grubbs et al. reported that the ruthenium-catalyzed RCM of a conjugated diene proceeds in such a way that the less hindered olefin moieties participate in the reaction. Consequently, RCM of 115 gives exo-methylene compound 116, and not exo-vinyl compound 117 (Scheme 24) [105]. This regioselectivity is complementary to that observed for enyne metathesis of 118, which gives exclusively 117 (Scheme 24) [106a]. [Pg.256]

Clark and coworkers utilized enyne RCM for constructing the AB ring fragment of the manzamine alkaloids (Scheme 83) [177]. Exposing metathesis precursor 423 and ethylene gas to catalyst A provided bicycle 424 in near quantitative yield. Regioselective hydroboration of the vinyl group in 424, followed... [Pg.348]


See other pages where Vinyl regioselectivity is mentioned: [Pg.30]    [Pg.30]    [Pg.20]    [Pg.32]    [Pg.48]    [Pg.310]    [Pg.361]    [Pg.370]    [Pg.488]    [Pg.496]    [Pg.514]    [Pg.471]    [Pg.88]    [Pg.78]    [Pg.95]    [Pg.97]    [Pg.100]    [Pg.100]    [Pg.160]    [Pg.172]    [Pg.319]    [Pg.387]    [Pg.438]    [Pg.441]    [Pg.594]    [Pg.607]    [Pg.610]    [Pg.616]    [Pg.276]    [Pg.282]    [Pg.331]    [Pg.25]    [Pg.349]    [Pg.646]    [Pg.301]   
See also in sourсe #XX -- [ Pg.502 ]




SEARCH



Regioselective hydroformylation vinyl acetate

Regioselective hydroformylation vinyl ethers

Vinylation regioselectivity

© 2024 chempedia.info