Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vibrational - mode spectroscopy

II. Local Vibrational Mode Spectroscopy and Uniaxial Stress Techniques... [Pg.155]

R. C. Newman, Local Vibrational Mode Spectroscopy of Defects in III/V Compounds... [Pg.300]

Figure Bl.22.6. Raman spectra in the C-H stretching region from 2-butanol (left frame) and 2-butanethiol (right), each either as bulk liquid (top traces) or adsorbed on a rough silver electrode surface (bottom). An analysis of the relative intensities of the different vibrational modes led to tire proposed adsorption structures depicted in the corresponding panels [53], This example illustrates the usefiilness of Raman spectroscopy for the detennination of adsorption geometries, but also points to its main limitation, namely the need to use rough silver surfaces to achieve adequate signal-to-noise levels. Figure Bl.22.6. Raman spectra in the C-H stretching region from 2-butanol (left frame) and 2-butanethiol (right), each either as bulk liquid (top traces) or adsorbed on a rough silver electrode surface (bottom). An analysis of the relative intensities of the different vibrational modes led to tire proposed adsorption structures depicted in the corresponding panels [53], This example illustrates the usefiilness of Raman spectroscopy for the detennination of adsorption geometries, but also points to its main limitation, namely the need to use rough silver surfaces to achieve adequate signal-to-noise levels.
Pump-probe absorption experiments on the femtosecond time scale generally fall into two effective types, depending on the duration and spectral width of the pump pulse. If tlie pump spectrum is significantly narrower in width than the electronic absorption line shape, transient hole-burning spectroscopy [101. 102. 103. 104. 105. 106. 107. 108. 109. 110. 111. 112 and 113] can be perfomied. The second type of experiment, dynamic absorption spectroscopy [57, 114. 115. 116. 117. 118. 119. 120. 121 and 122], can be perfomied if the pump and probe pulses are short compared to tlie period of the vibrational modes that are coupled to the electronic transition. [Pg.1979]

Experimentally, local vibrational modes associated witli a defect or impurity may appear in infra-red absorjrtion or Raman spectra. The defect centre may also give rise to new photoluminescence bands and otlier experimentally observable signature. Some defect-related energy levels may be visible by deep-level transient spectroscopy (DLTS) [23]. [Pg.2884]

We find it convenient to reverse the historical ordering and to stait with (neatly) exact nonrelativistic vibration-rotation Hamiltonians for triatomic molecules. From the point of view of molecular spectroscopy, the optimal Hamiltonian is that which maximally decouples from each other vibrational and rotational motions (as well different vibrational modes from one another). It is obtained by employing a molecule-bound frame that takes over the rotations of the complete molecule as much as possible. Ideally, the only remaining motion observable in this system would be displacements of the nuclei with respect to one another, that is, molecular vibrations. It is well known, however, that such a program can be realized only approximately by introducing the Eckart conditions [38]. [Pg.502]

Analysis of Surface Molecular Composition. Information about the molecular composition of the surface or interface may also be of interest. A variety of methods for elucidating the nature of the molecules that exist on a surface or within an interface exist. Techniques based on vibrational spectroscopy of molecules are the most common and include the electron-based method of high resolution electron energy loss spectroscopy (hreels), and the optical methods of ftir and Raman spectroscopy. These tools are tremendously powerful methods of analysis because not only does a molecule possess vibrational modes which are signatures of that molecule, but the energies of molecular vibrations are extremely sensitive to the chemical environment in which a molecule is found. Thus, these methods direcdy provide information about the chemistry of the surface or interface through the vibrations of molecules contained on the surface or within the interface. [Pg.285]

Raman spectroscopy is particularly useful for investigating the structure of noncrystalline solids. The vibrational spectra of noncrystalline solids exhibit broad bands centered at wavenumbers corresponding to the vibrational modes of the corresponding crystals (Figure 5). In silicate glasses shifts in the high-wavenumber bands... [Pg.437]

The thirty-two silent modes of Coo have been studied by various techniques [7], the most fruitful being higher-order Raman and infra-red spectroscopy. Because of the molecular nature of solid Cqq, the higher-order spectra are relatively sharp. Thus overtone and combination modes can be resolved, and with the help of a force constant model for the vibrational modes, various observed molecular frequencies can be identified with specific vibrational modes. Using this strategy, the 32 silent intramolecular modes of Ceo have been determined [101, 102]. [Pg.55]

VIBRATIONAL MODES OF CARBON NANOTUBES SPECTROSCOPY AND THEORY... [Pg.129]

H2S2 (hydrogenpersulfide), the smallest member of the polysulfane series [15], has been studied extensively by molecular spectroscopy and theoretical calculations [16] (and references therein). By now, accurate knowledge of its structure, torsional potential and vibrational modes has been established. Ab initio calculations readily reproduce these properties [17]. The value of the SSH angle in hydrogen disulfide was a subject of controversies for some time. However, recent experiments led to a different value which is in favour of the ab initio calculated value [17]. [Pg.4]

Similarly, the first-order expansion of the p° and a of Eq. (5.1) is, respectively, responsible for IR absorption and Raman scattering. According to the parity, one can easily understand that selection mles for hyper-Raman scattering are rather similar to those for IR [17,18]. Moreover, some of the silent modes, which are IR- and Raman-inactive vibrational modes, can be allowed in hyper-Raman scattering because of the nonlinearity. Incidentally, hyper-Raman-active modes and Raman-active modes are mutually exclusive in centrosymmetric molecules. Similar to Raman spectroscopy, hyper-Raman spectroscopy is feasible by visible excitation. Therefore, hyper-Raman spectroscopy can, in principle, be used as an alternative for IR spectroscopy, especially in IR-opaque media such as an aqueous solution [103]. Moreover, its spatial resolution, caused by the diffraction limit, is expected to be much better than IR microscopy. [Pg.94]

The vibrational modes of the LS and HS isomers of the SCO complex [Fe (phen)2(NCS)2l (phen = 1,10-phenanthroline) have been measured by NIS (Fig. 9.38a), IR- and Raman-spectroscopy, and the vibrational frequencies and normal modes were calculated by DFT methods [44]. The calculated difference ASvib = 57-70 J moP depending on the method) is in qualitative agreement with the experimentally derived values (20-36 J mol K ). [Pg.526]


See other pages where Vibrational - mode spectroscopy is mentioned: [Pg.2885]    [Pg.154]    [Pg.139]    [Pg.2885]    [Pg.48]    [Pg.2885]    [Pg.154]    [Pg.139]    [Pg.2885]    [Pg.48]    [Pg.874]    [Pg.1385]    [Pg.1780]    [Pg.2962]    [Pg.365]    [Pg.269]    [Pg.319]    [Pg.414]    [Pg.421]    [Pg.429]    [Pg.444]    [Pg.446]    [Pg.193]    [Pg.140]    [Pg.136]    [Pg.742]    [Pg.366]    [Pg.351]    [Pg.403]    [Pg.105]    [Pg.46]    [Pg.498]    [Pg.512]    [Pg.34]    [Pg.107]    [Pg.246]   
See also in sourсe #XX -- [ Pg.247 ]




SEARCH



Vibration /vibrations spectroscopy

Vibrational modes

© 2024 chempedia.info