Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vaporizers vertical

Vertical vaporizer ( vertical bayonet ) It is widely used for chlorine, ammonia, propane, methanol, sulfur dioxide, etc. Sizes range from 50,000to 15,000,000 Btu/h (12,500 to 3,750,000 kcal/h). Veiy compact, hi productivity, easily combined with built-in superheater with common control. Many heating media can be used, including steam, hot water, and heat transfer fluids such as Dowtherm, Therminol, etc. Electric heated vaporizers also available. Small footprint. (See Fig.V-7.)... [Pg.832]

Figure 3.3 shows a simple type of classifier. In this device, a large tank is subdivided into several sections. A size range of solid particles suspended in vapor or liquid enters the tank. The larger, faster-settling particles settle to the bottom close to the entrance, and the slower-settling particles settle to the bottom close to the exit. The vertical baffles in the tank allow the collection of several fractions. [Pg.70]

The Megalopohs station (Fig. 4d) uses hot flue gas to dry the lignite. A cyclone separator and electrostatic precipitator permit rejection of some of the water vapor to the atmosphere rather than to the boiler. Another drying method uses a vertical shaft, heated by combustion gases, for partial drying prior to grinding. [Pg.156]

When low boiling ingredients such as ethylene glycol are used, a special provision in the form of a partial condenser is needed to return them to the reactor. Otherwise, not only is the balance of the reactants upset and the raw material cost of the resin increased, but also they become part of the pollutant in the waste water and incur additional water treatment costs. Usually, a vertical reflux condenser or a packed column is used as the partial condenser, which is installed between the reactor and the overhead total condenser, as shown in Figure 3. The temperature in the partial condenser is monitored and maintained to effect a fractionation between water, which is to pass through, and the glycol or other materials, which are to be condensed and returned to the reactor. If the fractionation is poor, and water vapor is also condensed and returned, the reaction is retarded and there is a loss of productivity. As the reaction proceeds toward completion, water evolution slows down, and most of the glycol has combined into the resin stmcture. The temperature in the partial condenser may then be raised to faciUtate the removal of water vapor. [Pg.40]

Fig. 22. Schematics of chemical vapor deposition epitaxial reactors (a) horizontal reactor, (b) vertical pedestal reactor, (c) multisubstrate rotating disk reactor, (d) barrel reactor, (e) pancake reactor, and multiple wafer-in-tube reactor (38). Fig. 22. Schematics of chemical vapor deposition epitaxial reactors (a) horizontal reactor, (b) vertical pedestal reactor, (c) multisubstrate rotating disk reactor, (d) barrel reactor, (e) pancake reactor, and multiple wafer-in-tube reactor (38).
Thermal decomposition of spent acids, eg, sulfuric acid, is required as an intermediate step at temperatures sufficientiy high to completely consume the organic contaminants by combustion temperatures above 1000°C are required. Concentrated acid can be made from the sulfur oxides. Spent acid is sprayed into a vertical combustion chamber, where the energy required to heat and vaporize the feed and support these endothermic reactions is suppHed by complete combustion of fuel oil plus added sulfur, if further acid production is desired. High feed rates of up to 30 t/d of uniform spent acid droplets are attained with a single rotary atomizer and decomposition rates of ca 400 t/d are possible (98). [Pg.525]

The compressor can be driven by electric motors, gas or steam turbiaes, or internal combustion (usually diesel) engines. The compressor can also be a steam-driven ejector (Fig. 7b), which improves plant reUabiUty because of its simplicity and absence of moving parts, but also reduces its efficiency because an ejector is less efficient than a mechanical compressor. In all of the therm ally driven devices, turbiaes, engines, and the ejector mentioned hereia, the exhaust heat can be used for process efficiency improvement, or for desalination by an additional distillation plant. Figure 8 shows a flow diagram of the vertical-tube vapor compression process. [Pg.246]

Fig. 8. Pictorial view (a) and flow diagram (b) for a vertical-tube vapor-compression process. Courtesy of Resources Conservation Co. Fig. 8. Pictorial view (a) and flow diagram (b) for a vertical-tube vapor-compression process. Courtesy of Resources Conservation Co.
Another method iavolves an electric-arc vaporizer which is >2000° C before burning (25,32). One of the features of the process is a rapid quench of the hot gas flow to yield very fine oxide particles (<0.15 nm). This product is quite reactive and imparts accelerated cure rates to mbber. Internally fired rotary kilns are used extensively ia Canada and Europe and, to a limited extent, ia the United States (24). The burning occurs ia the kiln and the heat is sufficient to melt and vaporize the ziac. Because of the lower temperatures, the particles are coarser than those produced ia the other processes. In a fourth process, ziac metal which is purified ia a vertical refining column is burned. In essence, the purification is a distillation and impure ziac can be used to make extremely pure oxide. Also, a wide range of particle sizes is possible (33). [Pg.422]

Fig. 1. Vapor pressure and relative humidity over CaCl solutions and solids. The straight horizontal lines ia the right-hand portion represent two soHd phases and a gas phase for vertical line iatersections. In addition, a soHd phase, saturated solution, and a vapor phase occur ia the regions between the vertical lines. The lower left-hand corner shows the ice solution line. The region ia between, with skewed isothermal lines, represents unsaturated solutions ... Fig. 1. Vapor pressure and relative humidity over CaCl solutions and solids. The straight horizontal lines ia the right-hand portion represent two soHd phases and a gas phase for vertical line iatersections. In addition, a soHd phase, saturated solution, and a vapor phase occur ia the regions between the vertical lines. The lower left-hand corner shows the ice solution line. The region ia between, with skewed isothermal lines, represents unsaturated solutions ...

See other pages where Vaporizers vertical is mentioned: [Pg.163]    [Pg.190]    [Pg.163]    [Pg.190]    [Pg.69]    [Pg.342]    [Pg.144]    [Pg.254]    [Pg.18]    [Pg.41]    [Pg.350]    [Pg.409]    [Pg.428]    [Pg.453]    [Pg.442]    [Pg.442]    [Pg.212]    [Pg.168]    [Pg.398]    [Pg.172]    [Pg.432]    [Pg.433]    [Pg.55]    [Pg.76]    [Pg.78]    [Pg.78]    [Pg.147]    [Pg.347]    [Pg.412]    [Pg.412]    [Pg.415]    [Pg.528]    [Pg.308]    [Pg.308]    [Pg.188]    [Pg.338]    [Pg.418]    [Pg.242]    [Pg.244]    [Pg.245]    [Pg.406]    [Pg.430]    [Pg.30]   
See also in sourсe #XX -- [ Pg.5 ]




SEARCH



Vertical bayonet vaporizers

Vertical-tube vapor-compression process

© 2024 chempedia.info