Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Urethans hydrolysis

Hydrolysis of urethane linkages is catalyzed most effectively by base rather than acid ( ). In uncatalyzed formulations the measured rate of hydrolysis is slow (14). Less than 10% of the crosslinks are hydrolyzed after 2000 hours of exposure to condensing humidity at 50 C (Figure 3). The measured activation energy for urethane hydrolysis is around 20 kcal/mole ( ). Using these data it can be concluded that for uncatalyzed formulations hydrolysis is negligible during normal service life. [Pg.87]

The above procedure describes the only known preparation of the inner salt of methyl (carboxysulfamoyl)triethylammonium hydroxide and illustrates the use of this reagent to convert a primary alcohol to the corresponding urethane. Hydrolysis of the urethane would then provide the primary amine. The method is limited to primary alcohols secondary and tertiary alcohols are dehydrated to olefins under these conditions, often in synthetically useful yields. ... [Pg.102]

Almost all IDA derived chain extenders are made through ortho-alkylation. Diethyltoluenediamine (DE I DA) (C H gN2) (53), with a market of about 33,000 t, is the most common. Many uses for /-B I DA have been cited (1,12). Both DE I DA and /-B I DA are especially useful in RIM appHcations (49,53—55). Di(methylthio)-TDA, made by dithioalkylation of TDA, is used in cast urethanes and with other TDI prepolymers (56). Styrenic alkylation products of TDA are said to be useful, eg, as in the formation of novel polyurethane—polyurea polymers (57,58). Progress in understanding aromatic diamine stmcture—activity relationships for polyurethane chain extenders should allow progress in developing new materials (59). Chlorinated IDA is used in polyurethane—polyurea polymers of low hysteresis (48) and in reinforced polyurethane tires (60). The chloro-TDA is made by hydrolysis of chloro-TDI, derived from TDA (61). [Pg.239]

Derivatization of cyclic urethanes with (B0C)20 makes the urethane carbonyl susceptible to hydrolysis under mild conditions and leaves the amine protected as a BOC derivative."... [Pg.328]

The isolated urethane may be hydrolyzed by this procedure at any time. For the hydrolysis step, the yield is 89-91%. [Pg.72]

The specialty class of polyols includes poly(butadiene) and polycarbonate polyols. The poly(butadiene) polyols most commonly used in urethane adhesives have functionalities from 1.8 to 2.3 and contain the three isomers (x, y and z) shown in Table 2. Newer variants of poly(butadiene) polyols include a 90% 1,2 product, as well as hydrogenated versions, which produce a saturated hydrocarbon chain [28]. Poly(butadiene) polyols have an all-hydrocarbon backbone, producing a relatively low surface energy material, outstanding moisture resistance, and low vapor transmission values. Aromatic polycarbonate polyols are solids at room temperature. Aliphatic polycarbonate polyols are viscous liquids and are used to obtain adhesion to polar substrates, yet these polyols have better hydrolysis properties than do most polyesters. [Pg.770]

There appear to be conflicting reports regarding the degradation of urethanes. For example, some urethanes are reported to have relatively poor hydrolysis resistance and good biodegradability [77], while other urethanes are reported to be so hydrolytically stable that they have been successfully used as an artificial heart [78]. Both reports are correct. It will be shown that the thermal, oxidative, and hydrolytic stability of urethanes can be controlled, to some degree, by the choice of raw materials used to make the urethane. [Pg.801]

As previously mentioned, some urethanes can biodegrade easily by hydrolysis, while others are very resistant to hydrolysis. The purpose of this section is to provide some guidelines to aid the scientist in designing the desired hydrolytic stability of the urethane adhesive. For hydrolysis of a urethane to occur, water must diffuse into the bulk polymer, followed by hydrolysis of the weak link within the urethane adhesive. The two most common sites of attack are the urethane soft segment (polyol) and/or the urethane linkages. Urethanes made from PPG polyols, PTMEG, and poly(butadiene) polyols all have a backbone inherently resistant to hydrolysis. They are usually the first choice for adhesives that will be exposed to moisture. Polyester polyols and polycarbonates may be prone to hydrolytic attack, but this problem can be controlled to some degree by the proper choice of polyol. [Pg.806]

Schollenberger and Stewart studied the hydrolysis of various polyester urethanes by immersing the materials in water at 70°C for several weeks and measuring the tensile properties. The data are shown in Table 6 [89]. The urethane... [Pg.806]

Schollenberger added 2% of a polycarbodiimide additive to the same poly(tetra-methylene adipate) urethane with the high level of acid (AN = 3.66). After 9 weeks of 70°C water immersion, the urethane was reported to retain 84% of its original strength. Carbodiimides react quickly with residual acid to form an acyl urea, removing the acid catalysis contributing to the hydrolysis. New carbodiimides have been developed to prevent hydrolysis of polyester thermoplastics. Carbodiimides are also reported to react with residual water, which may contribute to hydrolysis when the urethane is exposed to high temperatures in an extruder [90]. [Pg.807]

Hillshafer et al. reported that aromatic polyester urethanes based on orthoph-thalic anhydride had better hydrolysis resistance than polycaprolactone urethanes, despite high acid numbers [91]. [Pg.807]

Hydrolysis studies compared a polycarbonate urethane with a poly(tetramethyl-ene adipate) urethane and a polyether urethane based on PTMEG. After 2 weeks in 80°C water, the polycarbonate urethane had the best retention of tensile properties [92], Polycarbonates can hydrolyze, although the mechanism of hydrolysis is not acid-catalyzed, as in the case of the polyesters. Polycarbonate polyurethanes have better hydrolysis resistance than do standard adipate polyurethanes, by virtue of the highest retention of tensile properties. It is interesting to note in the study that the PTMEG-based urethanes, renowned for excellent hydrolysis resistance, had lower retention of physical properties than did the polycarbonate urethanes. [Pg.808]

It is speculated that the water does not diffuse as easily into the polycarbonate as into the PTMEG urethane, making the polycarbonate more resistant to plasticization by water and subsequent hydrolysis. The tensile properties of the PTMEG polyurethane eventually returned to nearly the original tensile properties, if the material was allowed to dry at room temperature for 2 weeks. This observation lends credence to the idea that the PTMEG urethane was plasticized by water. [Pg.808]

The Cunius degradation of acyl azides prepared either by treatment of acyl halides with sodium azide or trimethylsilyl azide [47] or by treatment of acyl hydrazides with nitrous acid [f J yields pnmarily alkyl isocyanates, which can be isolated when the reaction is earned out in aptotic solvents If alcohols are used as solvents, urethanes are formed Hydrolysis of the isocyanates and the urethanes yields primary amines. [Pg.916]

Early attempts to prepare 5-amino- and 5-acylaminobenzofuroxans by hypochlorite oxidation of the corresponding o-nitroanilines met with failure. Pyrolysis of the appropriate azide, however, gives 5-dimetliylamino- and 5-acetamidobenzofuroxan, whereas urethans of type (33) are produced by Curtius degradation of the 5-carboxylic acid. Controlled hydrolysis of the acetamido compound and the... [Pg.17]

Reaction of aniline derivatives with 4-chlorobutyroyl chloride followed by cyclization with sodium ethoxide and subsequent thionation promoted by sonication gave the corresponding A -arylpyrrolidine-2-thiones 126. Zinc-mediated condensation of diethyl bromomalonate with 126 using iodine as activator gave the vinylogous urethanes 127 whose cyclization with PPA gave the tricyclic compound 128 which upon hydrolysis afforded the acid 129 (96TL9403). [Pg.90]

Apart from the Important reaction leading to the formation of urethane groups, carbon dioxide can be released during curing by hydrolysis of the Isocyanate group, leading to the formation of urea groups (10). [Pg.231]

According to the literature (6) the formation of urea from amine and isocyanate proceeds much faster than the formation of urethane or the hydrolysis of Isocyanate. [Pg.231]

The formation of Intermediate compounds (e.g. carbamlc acid) Is not described in the model. So, the formation of urethane (reaction 1) and the hydrolysis of the isocyanate (reaction 2) are the rate-determining steps. [Pg.231]

The process proceeds through the reaction of pairs of functional groups which combine to yield the urethane interunit linkage. From the standpoint of both the mechanism and the structure type produced, inclusion of this example with the condensation class clearly is desirable. Later in this chapter other examples will be cited of polymers formed by processes which must be regarded as addition polymerizations, but which possess within the polymer chain recurrent functional groups susceptible to hydrolysis. This situation arises most frequently where a cyclic compound consisting of one or more structural units may be converted to a polymer which is nominally identical with one obtained by intermolecular condensation of a bifunctional monomer e.g., lactide may be converted to a linear polymer... [Pg.39]

Although polymers in-service are required to be resistant toward hydrolysis and solar degradation, for polymer deformulation purposes hydrolysis is an asset. Highly crystalline materials such as compounded polyamides are difficult to extract. For such materials hydrolysis or other forms of chemolysis render additives accessible for analysis. Polymers, which may profitably be depolymerised into their monomers by hydrolysis include PET, PBT, PC, PU, PES, POM, PA and others. Hydrolysis occurs when moisture causes chain scissions to occur within the molecule. In polyesters, chain scissions take place at the ester linkages (R-CO-O-R ), which causes a reduction in molecular weight as well as in mechanical properties. Polyesters show their susceptibility to hydrolysis with dramatic shifts in molecular weight distribution. Apart from access to the additives fraction, hydrolysis also facilitates molecular characterisation of the polymer. In this context, it is noticed that condensation polymers (polyesters, -amides, -ethers, -carbonates, -urethanes) have also been studied much... [Pg.152]

O-acetylophiocarpine (381) with ethyl chloroformate afforded the C-8—N cleaved urethane 382 in quantitative yield. Sequential treatment of 382 with silver nitrate, PCC, sodium hydroxide, and p-toluenesulfonic acid in ethanol furnished acetal 384, which was reduced with lithium aluminum hydride followed by hydrolysis to afford the hemiacetal 385. Oxidation of 385 with PCC provided (+ )-a-hydrastine (369). Similar treatment of O-acetylepi-ophiocarpine (386) afforded ( )-/J-hydrastine (368) however, in this case, C—N bond cleavage of 386 with ethyl chloroformate proceeded without regioselectivity. [Pg.200]

A third conversion was achieved by application of photochemical transformation of a spirobenzylisoquinoline to a protoberberine (243,244). Hydro-genolysis of the urethane 149 followed by hydrolysis gave the amino ketone... [Pg.219]


See other pages where Urethans hydrolysis is mentioned: [Pg.9]    [Pg.9]    [Pg.92]    [Pg.156]    [Pg.341]    [Pg.759]    [Pg.807]    [Pg.90]    [Pg.568]    [Pg.383]    [Pg.290]    [Pg.207]    [Pg.208]    [Pg.554]    [Pg.596]    [Pg.153]    [Pg.97]    [Pg.194]    [Pg.221]    [Pg.271]    [Pg.397]    [Pg.170]    [Pg.189]   
See also in sourсe #XX -- [ Pg.380 ]




SEARCH



Hydrolysis of urethanes

Urethane, hydrolysis reactions

Urethanes, hydrolysis

Urethanes, hydrolysis

Urethanes, hydrolysis preparation

© 2024 chempedia.info