Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Urethane polymers processing

The amount and physical character of the char from rigid urethane foams is found to be affected by the retardant (20—23) (see Foams Urethane polymers). The presence of a phosphoms-containing flame retardant causes a rigid urethane foam to form a more coherent char, possibly serving as a physical barrier to the combustion process. There is evidence that a substantial fraction of the phosphoms may be retained in the char. Chars from phenohc resins (qv) were shown to be much better barriers to pyrolysate vapors and air when ammonium phosphate was present in the original resin (24). This barrier action may at least partly explain the inhibition of glowing combustion of char by phosphoms compounds. [Pg.475]

This simple reaction is the bedrock of the polyurethane iadustry (see Urethane polymers). Detailed descriptions of the chemistry and process have been published (65—67). Certain carbamates are known to reversibly yield the isocyanate and polyol upon heating. This fact has been commercially used to synthesize a number of blocked isocyanates for elastomer and coating appHcations. [Pg.451]

In the second step, a papermaking method is also used for the fine fibers, less than 0.1 tex (1 den). This process is usually followed by a high pressure water jet process instead of the third step. In the fourth step, to obtain the required properties in specific appHcations, a polyurethane is selected out of the segmented polyurethanes, which comprises a polymer diol, a diisocyanate, and a chain extender (see Urethane polymers). A DMF—water bath for coagulation is also controlled to create the adequate pore stmcture in combination with fibers. [Pg.94]

Polymers. AH nitro alcohols are sources of formaldehyde for cross-linking in polymers of urea, melamine, phenols, resorcinol, etc (see Amino RESINS AND PLASTICS). Nitrodiols and 2-hydroxymethyl-2-nitro-l,3-propanediol can be used as polyols to form polyester or polyurethane products (see Polyesters Urethane polymers). 2-Methyl-2-nitro-l-propanol is used in tires to promote the adhesion of mbber to tire cord (qv). Nitro alcohols are used as hardening agents in photographic processes, and 2-hydroxymethyl-2-nitro-l,3-propanediol is a cross-linking agent for starch adhesives, polyamides, urea resins, or wool, and in tanning operations (17—25). Wrinkle-resistant fabric with reduced free formaldehyde content is obtained by treatment with... [Pg.61]

Urethanes are processed as mbber-like elastomers, cast systems, or thermoplastic elastomers. The elastomer form is mixed and processed on conventional mbber mills and internal mixers, and can be compression, transfer, or injection molded. The Hquid prepolymers are cast using automatic metered casting machines, and the thermoplastic peUets are processed like aU thermoplastic materials on traditional plastic equipment. The unique property of the urethanes is ultrahigh abrasion resistance in moderately high Shore A (75—95) durometers. In addition, tear, tensUe, and resistance to many oUs is very high. The main deficiencies of the urethanes are their resistance to heat over 100°C and that shear and sliding abrasion tend to make the polymers soft and gummy. [Pg.234]

Glean-Up Solvent. Dimethyl sulfoxide is used to remove urethane polymers and other difficult-to-solvate materials from processing equipment. [Pg.112]

The addition polymerization of diisocyanates with macroglycols to produce urethane polymers was pioneered in 1937 (1). The rapid formation of high molecular weight urethane polymers from Hquid monomers, which occurs even at ambient temperature, is a unique feature of the polyaddition process, yielding products that range from cross-linked networks to linear fibers and elastomers. The enormous versatility of the polyaddition process allowed the manufacture of a myriad of products for a wide variety of appHcations. [Pg.341]

Polyurethane. Polyurethanes (pu) are predominantly thermosets. The preparation processes for polyurethane foams have several steps (see Urethane polymers) and many variations that lead to products of widely differing properties. Polyurethane foams can have quite low thermal conductivity values, among the lowest of all types of thermal insulation, and have replaced polystyrene and glass fiber as insulation in refrigeration. The sprayed-on foam can be appHed to walls, roofs, tanks, and pipes, and between walls or surfacing materials directly. The slabs can be used as insulation in the usual ways. [Pg.328]

This process is based on the very high reactivity of the isocyanate group toward hydrogen present ia hydroxyl groups, amines, water, etc, so that the chain extension reaction can proceed to 90% yield or better. Thus when a linear polymer is formed by chain extension of a polyester or polyether of molecular weight 1000—3000, the final polyurethane may have a molecular weight of 100,000 or higher (see Urethane polymers). [Pg.471]

Other Derivatives. Ethylene carbonate, made from the reaction of ethylene oxide and carbon dioxide, is used as a solvent. Acrylonitrile (qv) can be made from ethylene oxide via ethylene cyanohydrin however, this route has been entirely supplanted by more economic processes. Urethane intermediates can be produced using both ethylene oxide and propylene oxide in their stmctures (281) (see Urethane polymers). [Pg.466]

The foams can be obtained by the action of a diiscyanate on a polyol and water. The reaction with water forms carbon dioxide and the reaction with polyol forms a urethane polymer. Catalysts play a crucial role in the process. Tin octeate and dibutyl tin dilaurate are preferred catalysts along with tertiary amines. [Pg.203]

Specialty Chemicals Polymer Products Additives Polymer Processing Equipment Agrochemicals Polyurethane Dispersions Rubber Urethane Products Pool Spa Chemicals Household Cleaners... [Pg.208]

Silane-endcapped urethane polymers are prepared in a two-step process ... [Pg.210]

Flexible Foams CO2 obtained in situ by the reaction of water with isocyanate has been the chief blowing agent for all commercially produced flexible urethane foams. The amount of water and tolylene diisocyanate (TDI) used determines foam density, providing most of the gas formed is used to expand the urethane polymer. Because water participates in the polymerization reactions leading to the expanded cellular urethane polymer, it has a very pronounced influence on the properties of foams. For better control of the foaming process most foam manufacturers employ distilled or deionized water (16). [Pg.288]

Urethane polymer resins that still contain unreacted isocyanate groups react with atmospheric moisture and continue curing. The reaction is a two-step process. Eirst, water reacts with some of the free isocyanate groups producing an amine and... [Pg.95]

Urethane polymer, when fully reacted, is completely chemically inert. Polyurethane micelles are thus used for some drug delivery processes. [Pg.1262]


See other pages where Urethane polymers processing is mentioned: [Pg.307]    [Pg.405]    [Pg.348]    [Pg.105]    [Pg.144]    [Pg.476]    [Pg.454]    [Pg.350]    [Pg.348]    [Pg.144]    [Pg.343]    [Pg.689]    [Pg.105]    [Pg.73]    [Pg.513]    [Pg.3287]    [Pg.57]    [Pg.57]    [Pg.57]    [Pg.2]    [Pg.476]    [Pg.581]    [Pg.33]    [Pg.207]   
See also in sourсe #XX -- [ Pg.25 , Pg.468 , Pg.469 , Pg.470 , Pg.471 , Pg.472 , Pg.473 , Pg.474 , Pg.475 , Pg.476 ]




SEARCH



Urethane polymers

© 2024 chempedia.info