Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Unsymmetrical Chains

Kovalev, B.G., Al tmark, E.M., and Lavrinenko, E.S., Unsymmetrical chain lengthening of dimethyl diketones in the Wittig reaction. Synthesis of esters of a,P-unsaturated keto acids and ketonitriles, Zh. Org. Khim., 6, 2187, 1970 J. Org. Chem. USSR (Engl. Transl.), 6, 2196, 1970. [Pg.317]

While Tjn is a first-order transition, Tg is a second-order transition and this precludes the possibility of a simple relation between them. There is, however, a crude relation between T and Tg. Thus the ratio Tg/Tn, range from 0.5 to 0.75 when the temperatures are expressed in Kelvin. The relation is represented in Figure 1.22 where a broad band covers most of the results for linear hompolymers and the ratio (Tg/Tm) lies between 0.5 and 0.75 for about 80% of these [ 17,18]. The ratio is closer to 0.5 for symmetrical polymers such as polyethylene and polybutadiene, but closer to 0.75 for unsymmetrical polymers, such as polystyrene and polyisoprene. The difference in these values may be related to the fact that in unsymmetrical chains with repeat units of the type -(CH2-CHX-)- an additional restriction to rotation is imposed by steric effects causing Tg to increase, and conversely, an increase in symmetry lowers Tg. [Pg.66]

Many of the stereoregular polymers prepared are highly crystalline, and the tendency to form ordered structures increases as the stereoregularity becomes more pronounced. We shall see later that crystalline order is usually associated with regular symmetrical polymer structures, whereas the asymmetric monomers form highly unsymmetrical chains. Some other factors must aid crystallite formation. [Pg.163]

Regioselectivity becomes important, if unsymmetric difunctional nitrogen components are used. In such cases two different reactions of the nitrogen nucleophile with the open-chain educt may be possible, one of which must be faster than the other. Hydrazone formation, for example, occurs more readily than hydrazinoLysis of an ester. In the second example, on the other hand, the amide is formed very rapidly from the acyl chloride, and only one cyclization product is observed. [Pg.149]

The issue of regioselectivity arises with arylhydrazones of unsymmetrical ketones which can form two different enehydrazine intermediates. Under the conditions used most commonly for Fischer cyclizations, e g. ethanolic HCI, the major product is usually the one arising from the more highly substituted enehydrazine. Thus methyl ketones usually give 2-methy indoles and cycliz-ation occurs in a branched chain in preference to a straight chain. This regioselectivity is attributed to the greater stability of the more substituted enhydrazine and its dominance of the reaction path. [Pg.56]

The main industrial use of alkyl peroxyesters is in the initiation of free-radical chain reactions, primarily for vinyl monomer polymerizations. Decomposition of unsymmetrical diperoxyesters, in which the two peroxyester functions decompose at different rates, results in the formation of polymers of enhanced molecular weights, presumably due to chain extension by sequential initiation (204). [Pg.131]

Because aH bonds within the polymethine chain of symmetrical PMDs are significantly equalized and change slightly on excitation, relatively smaH Stokes shifts (500 600 cm ) are observed in their spectra. In unsymmetrical PMDs, the essential bond alternation exists in the ground state. However, bond orders in the excited state are found to be insensitive to the symmetry perturbation. As a result, the deviations of fluorescence maxima, are much lower than those of absorption maxima, (3,10,56—58). The vinylene shifts of fluorescence maxima of unsymmetrical PMDs are practicaHy constant and equal to 100 nm (57). [Pg.494]

Oxidation. Disulfides are prepared commercially by two types of reactions. The first is an oxidation reaction uti1i2ing the thiol and a suitable oxidant as in equation 18 for 2,2,5,5-tetramethyl-3,4-dithiahexane. The most common oxidants are chlorine, oxygen (29), elemental sulfur, or hydrogen peroxide. Carbon tetrachloride (30) has also been used. This type of reaction is extremely exothermic. Some thiols, notably tertiary thiols and long-chain thiols, are resistant to oxidation, primarily because of steric hindrance or poor solubiUty of the oxidant in the thiol. This type of process is used in the preparation of symmetric disulfides, RSSR. The second type of reaction is the reaction of a sulfenyl haUde with a thiol (eq. 19). This process is used to prepare unsymmetric disulfides, RSSR such as 4,4-dimethyl-2,3-dithiahexane. Other methods may be found in the Hterature (28). [Pg.12]

The haloform reaction of unsymmetrical perfluoroalkyl and co-hydroper-fluoroalkyl trifluororaethyl ketones gives the alkane corresponding to the longer alkyl chain [54] (equation 53) If the methyl group contains chlorine, the reaction can take different pathways, leading to loss of chlorine (equation 54), because of the variable stability of the chlorine-substituted methyl carbanions in alkali. [Pg.439]

When the side chain involves an unsymmetrical urea moiety, muscle relaxant activity is often seen. One such agent, 1 id-amidi ne ( ) exerts its activity as an anti peristaltic agent. Its synthesis involves the straightforward reaction of 2,6-di-... [Pg.56]

Due to the inherent unsymmetric arene substitution pattern the benzannulation reaction creates a plane of chirality in the resulting tricarbonyl chromium complex, and - under achiral conditions - produces a racemic mixture of arene Cr(CO)3 complexes. Since the resolution of planar chiral arene chromium complexes can be rather tedious, diastereoselective benzannulation approaches towards optically pure planar chiral products appear highly attractive. This strategy requires the incorporation of chiral information into the starting materials which may be based on one of three options a stereogenic element can be introduced in the alkyne side chain, in the carbene carbon side chain or - most general and most attractive - in the heteroatom carbene side chain (Scheme 20). [Pg.135]

Introduction of bulky lateral substituents on monomer units to increase interchain distance and prevent close packing in polymer crystal. The use of unsymmetrically substituted monomers, resulting in a random distribution of head-to-head and head-to-tail structures in polymer chains, further helps in disrupting regularity. Some examples of substituent effects are given in Table 2.16. [Pg.50]

The Amax of bridged dyes such as thiazoloindole symmetrical and unsymmetrical trimethine dyes are shifted toward shorter wavelength compared to the corresponding N-phenylthiazolocyanine. This hypsochromic shift corresponds to an electron-donating substituent in the opposition of the chain when steric hindrance is absent (121). [Pg.254]

Faraday, in 1834, was the first to encounter Kolbe-electrolysis, when he studied the electrolysis of an aqueous acetate solution [1], However, it was Kolbe, in 1849, who recognized the reaction and applied it to the synthesis of a number of hydrocarbons [2]. Thereby the name of the reaction originated. Later on Wurtz demonstrated that unsymmetrical coupling products could be prepared by coelectrolysis of two different alkanoates [3]. Difficulties in the coupling of dicarboxylic acids were overcome by Crum-Brown and Walker, when they electrolysed the half esters of the diacids instead [4]. This way a simple route to useful long chain l,n-dicarboxylic acids was developed. In some cases the Kolbe dimerization failed and alkenes, alcohols or esters became the main products. The formation of alcohols by anodic oxidation of carboxylates in water was called the Hofer-Moest reaction [5]. Further applications and limitations were afterwards foimd by Fichter [6]. Weedon extensively applied the Kolbe reaction to the synthesis of rare fatty acids and similar natural products [7]. Later on key features of the mechanism were worked out by Eberson [8] and Utley [9] from the point of view of organic chemists and by Conway [10] from the point of view of a physical chemist. In Germany [11], Russia [12], and Japan [13] Kolbe electrolysis of adipic halfesters has been scaled up to a technical process. [Pg.92]

It is used to prepare symmetrical RR, where R is straight or branched chained, except that little or no yield is obtained when there is a branching. The reaction is not successful for R = aryl. Many functional groups may be present, though many others inhibit the reaction." Unsymmetrical RR have been made by coupling mixtures of acid salts. [Pg.942]

In the case of an unsymmetrical diene such as isoprene, different orientations of the structural units are possible depending on which end of the diene unites with the chain radical. Of the two competing reactions (6) and (7) shown on page 241, the former would appear to be the more probable one on account of the influence of the methyl substituent in stabilizing to some extent one of the resonance hybrid structures which are shown. [Pg.240]

Catalysts with an unsymmetrical NHC ligand featuring a vinylic side chain have the unique ability to metathesise their own ligand to form a metaUacycle as shown in Scheme 3.7 [119], Ring opening metathesis will then incorporate the monomers, e.g. cyclooctene, into that cycle until a cyclic polymer is cleaved by another intramolecular metathesis step. The catalyst is recovered and can restart this endless route to cyclic polymers [121]. [Pg.87]

The regioselective hydrozirconahon of internal unsymmetrical alkenes remains a challenge, as it could considerably expand the use of zirconocene complexes. Little is known about the mechanism of zirconium migration along an alkyl chain. [Pg.258]


See other pages where Unsymmetrical Chains is mentioned: [Pg.165]    [Pg.882]    [Pg.883]    [Pg.179]    [Pg.411]    [Pg.165]    [Pg.882]    [Pg.883]    [Pg.179]    [Pg.411]    [Pg.36]    [Pg.57]    [Pg.77]    [Pg.99]    [Pg.479]    [Pg.490]    [Pg.284]    [Pg.89]    [Pg.74]    [Pg.452]    [Pg.131]    [Pg.38]    [Pg.482]    [Pg.153]    [Pg.244]    [Pg.262]    [Pg.1551]    [Pg.124]    [Pg.172]    [Pg.81]   


SEARCH



Unsymmetric

© 2024 chempedia.info